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Abstract
This paper concerns the automatic transcription of music and pro-
poses a method for transcribing sung melodies. The method pro-
duces symbolic notations (i.e., MIDI files) from acoustic inputs
based on two probabilistic models: a note event model and a musi-
cological model. Note events are described with a hidden Markov
model (HMM) using four musical features: pitch, voicing, accent,
and metrical accent. The model uses these features to calculate
the likelihoods of different notes and performs note segmentation.
The musicological model applies key estimation and the likelihoods
of two-note and three-note sequences to determine transition like-
lihoods between different note events. These two models form a
melody transcription system with a modular architecture which can
be extended with desired front-end feature extractors and musico-
logical rules. The system transcribes correctly over 90 % of notes,
thus halving the amount of errors compared to a simple rounding of
pitch estimates to the nearest MIDI note.

1. Introduction
Transcription of music refers to the process of generating symbolic
notations, i.e., musical transcriptions, for musical performances.
Conventionally, musical transcriptions have been written by hand,
requiring both time and musical education. If the transcription
could be accomplished computationally, it would significantly ben-
efit music professionals and, more importantly, enable voice-input
functionalities in consumer applications. Melodies are consecutive
note sequences with organised and recognisable shape, and they are
important in characterising music content.

The conventional approach to transcribe melodies is to extract
pitch estimates from an acoustic input and to convert these into a
symbolic notation. There are several solutions for pitch estimation.
For a review of different methods, see [1], [2], and [3]. However, a
reliable conversion of pitch estimates into a symbolic notation has
proven to be a challenging problem, especially for singing. This is
because a typical performance contains inaccuracies in both pitch
and timing which are difficult to correct without prior knowledge
about musical conventions. If pitch estimates are simply rounded
to the nearest MIDI note numbers and considered as notes, the re-
sult both sounds coarse and provides no note boundaries required to
produce a symbolic notation.

In recent years, several methods have been proposed for tran-
scribing monophonic melodies (i.e., melodies with a single note
sounding at a time) particularly in the context of query-by-humming
systems. Clarisse et al. proposed a method which first determines
note segments from a humming input and then assigns a note value
for each segmented note region [4]. Another system, proposed by
Viitaniemi et al. in [5], introduced a musical-key estimation model
and used a probabilistic model to infer note values from raw pitch
estimates. In addition, they estimated transition likelihoods between
pitched frames to enhance the transcription accuracy. However,
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Figure 1: The block diagram of our melody transcription system.

both of the mentioned systems ignore note events as musicological
units having dynamic nature. This idea of notes was considered by
Shih et al. who modelled hummed notes with a three-state left-to-
right HMM [6]. Their note model focused on modelling phonemes
by using mel-frequency cepstral coefficients, energy measures, and
the derivatives of these. However, their approach was to model the
timbre of the hummed phonemes instead of the musical features of
note events.

This paper presents a probabilistic note model that considers the
temporal behaviour of musical features during note events and en-
ables a more appropriate examination of the musical relationships
between consecutive notes. Figure 1 shows the block diagram of
our transcription system. First, the system extracts musical features
from a music signal. The pitch estimates are processed by the mu-
sicological model which estimates the musical key and produces a
matrix of transition likelihoods between notes. The musical features
are used by the note event models to calculate likelihoods of differ-
ent note candidates. The most probable note sequence is found by
using the Token-passing algorithm [7], producing the transcribed
melody and note boundaries.

The main focus of this paper is on the modelling of note events
and on using the model in singing transcription. The paper is or-
ganised as follows. Section 2 explains the extraction of musical
features. Section 3 introduces the note model and the musicological
model. Section 4 explains the evaluation of the system and reports
the transcription results, and Section 5 summarises the contents of
the paper.

2. Musical feature extraction
The front-end of the transcription system extracts four musical fea-
tures in successive frames of an input signal: pitch xt, voicing νt,



accent at, and meter mt where t denotes the starting time of a
frame. The features are extracted in 25 ms intervals. Pitch and
voicing represent the fundamental frequency and the degree of pe-
riodicity within a frame, respectively. Accent and meter features
indicate the degree of phenomenal accent and metrical accent as
a function of time [8]. Phenomenal accents refer to the moments
having perceptual emphasis in music signals and in practise indi-
cate performed note beginnings. Metrical accent, on the other hand,
corresponds to the underlying pulse of a music performance and
it is used to indicate predicted note beginnings, i.e., should there
exist a note beginning according to the timing of the performance.
Figure 2 shows the four musical features extracted from a singing
performance.

2.1. Pitch and voicing extraction

Pitch and voicing are extracted using the YIN algorithm, as origi-
nally proposed by de Cheveigné and Kawahara in [3]. Given that
yn is a discrete time-domain signal with sampling rate fs (Hz), κ
is a constant absolute threshold value, and W is the summing inter-
val of 50 ms, the YIN algorithm produces a pitch estimate xt and a
voicing value νt at time t as follows:

1. Calculate the squared difference function dt(τ) where τ is
the lag.

dt(τ) =

t+W−1
X

j=t

(yj − yj+τ )2 (1)

The lag gets values 0 ≤ τ < W .

2. Evaluate the cumulative-mean-normalised difference func-
tion d′

t(τ):

d′

t(τ) =



1, τ = 0
dt(τ) / [(1/τ)

Pτ

j=1
dt(j)], otherwise.

(2)

3. Find the smallest value of τ for which a local minimum of
d′

t(τ) is smaller than a given absolute threshold value κ. If
no such value is found, find the global minimum of d′

t(τ)
instead. Denote this lag value with τ ′.

4. Interpolate the d′

t(τ) function values at abscissas {τ ′ −
1, τ ′, τ ′ + 1} with a second order polynomial. Search the
minimum of the polynomial in the range (τ ′−1, τ ′ +1) and
denote the corresponding lag value with τ̂ .

In our transcription system, the pitch xt and the voicing νt features
are obtained by

xt = 69 + 12 log2

„

fs/τ̂

440Hz

«

, and (3)

νt = d′

t(τ̂). (4)

The values of the voicing feature range between zero and one. A
value below the absolute threshold (νt < κ) denotes a voiced pitch
estimate, meaning that small voicing values express a high degree
of periodicity. We use the absolute threshold value κ = 0.15.

If there is no reference tuning available for a singing perfor-
mance, pitch estimates can be tuned with an algorithm proposed
in [9] to minimise the distance between pitch estimates and MIDI
notes. In addition, the algorithm compensates for a possible base-
line drift of tuning.
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Figure 2: Pitch, voicing, accent, and meter extracted from a singing
performance. The dotted vertical lines denote the reference note
beginnings. Notice that small values of voicing indicate clear peri-
odicity.

2.2. Accent and meter estimation

The accent feature indicates the degree of phenomenal accent in
each frame, and it is here used to indicate the potential time instants
of note beginnings. The accent estimation method was proposed
in [10] and it produces registral accent signals at four frequency
channels of an audio input. We apply the method as such, except
that the outputs are summed across the channels. Since the sampling
rate of registral accent signals by the original author is greater than
our frame rate, the maximum of the summary signal in frame t is
used as the accent feature at.

The metrical accent estimation is performed with the method
proposed in [10] which is also capable of following changes in
tempo. The method uses the registral accent signals to produce es-
timates of the metrical pulses at three levels: measures, tactus, and
tatum levels. Measures divide a music performance into musical
segments, tactus corresponds to the tempo, and tatum expresses the
pulsing of the smallest temporal unit in the performance. The me-
ter feature mt is produced by generating sinusoidal impulses at the
time instants where a tatum beat or a tactus beat has occurred. First,
tatum beats are used to generate a signal mtat

t by

mtat
t = cos

„

2π
t − θi

θi+1 − θi

«

, θi ≤ t < θi+1, (5)

where θi is the occurrence time of the i:th tatum beat for i =
2, 3, . . . , T − 2, and θT is the last tatum beat time. If i = 1, the
equation is applied for θ1 − (θ2 + θ1)/2 ≤ t < θ2 to prevent
mtat

t from abruptly jumping to one at t = θ1. Correspondingly for
i = T −1, the equation holds at θT−1 ≤ t < θT +(θT +θT−1)/2.
Otherwise, mtat

t is zero. Second, tactus beats are used to gener-
ate a signal mtac

t in a similar fashion. However, tactus beats occur
less frequently than tatum beats, and generating mtac

t in the same



manner as in (5) would produce too wide sinusoidal pulses. There-
fore, the pulse widths are determined by the tatum beats. Given the
k:th tactus beat time βk, we search the tatum beat nearest to βk and
denote it with θk

i . The mtac
t is then defined as

mtac
t =

8

>

>

>

>

<

>

>

>

>

:

cos

„

2π
t − βk

2βk − θk
i + θk

i−1

«

,
θk

i + θk
i−1

2
≤ t < βk

cos

„

2π
t − βk

θk
i+1 + θk

i − 2βk

«

, βk ≤ t <
θk

i + θk
i+1

2
0, otherwise.

(6)
Finally, the meter feature is obtained by

mt =
1

2

`

mtat
t + mtac

t

´

+ 1. (7)

3. Probabilistic models
The transcription system applies two probabilistic models to
melody transcription. A note event model uses the musical fea-
tures to calculate likelihoods of different notes and a musicological
model determines the probabilities of transitions between notes.

3.1. Note event model

Note events are described with a left-to-right hidden Markov model
(HMM). The note HMM is a state machine where the states approx-
imate the typical values of musical features in the corresponding
temporal segments of note events. The model represents different
notes so that there exists one note HMM per each MIDI note number
n = 36, . . . , 79. Given the musical features at time t, we determine
the observation likelihoods that a certain state of note n has emitted
the features. For note n, the musical features comprise an observa-
tion vector o where we use the pitch difference ∆x = x−n instead
of the absolute pitch estimate value x. The HMM parameters (and
also the other features) are thus independent of the represented note,
and only one note-HMM parameters need to be trained in order to
represent all the different notes. The model is defined by the fol-
lowing HMM parameters.

1. The set of states S = {s1, s2, . . . , sK} within the model
where K is the number of states. The i:th state of the model
represents the i:th temporal segment of a note event.

2. The state-transition probabilities, i.e., the conditional proba-
bilities P (sj |si) that state si is followed by state sj where
si, sj ∈ S. The HMM topology is left-to-right without
skips, meaning that P (sj |si) 6= 0 only when j = i or
j = i + 1.

3. The observation likelihood distributions, i.e., the likelihoods
P (o|sj) that an observation vector o is emitted by state sj ∈
S.

4. The initial and the final state probabilities. States s1 and sK

must be the first and the last state within a note event.

The state-transition probabilities and the observation likelihood
distributions were estimated from an acoustic database contain-
ing audio material performed by five male and six female non-
professional singers. The singers were accompanied by MIDI rep-
resentations of the melodies which they heard through headphones
while performing. Only the performed melody was recorded and,
later, the reference accompaniments were synchronised with the
performances. The performances of three male and four female
singers were used to train the note model, including approximately
3100 note events in total. The reference notes were used to de-
termine note boundaries in the training material, and pitches xref

t

0.1

0.2

0.3

Pitch difference

1

2

3

Voicing

0.012
0.014
0.016
0.018

Accent

0.2
0.4
0.6
0.8 S

tate 1

Meter

1
2
3

1
2
3

0.1

0.2

0.3

0.2
0.4
0.6
0.8

1
1.2 S

tate 2

−20 0 20

0.01

0.02

0.03

semitones
0 0.5 1

0.5
1

1.5
2

0 10 20 30

0.01

0.015

0.02

0 1 2

0.2
0.4
0.6
0.8

1 S
tate 3

Figure 3: The observation likelihood distributions in three
states modelled with two GMM components for the feature set
{∆x, ν, a, m}.
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Figure 4: Examples of a common and an uncommon three-note se-
quences in the C-major-key context.

of the reference notes were used to determine the pitch difference
∆xt = xt−xref

t in frame t. The musical features during note events
formed observation sequences from which the maximum likelihood
estimates for the HMM parameters were obtained using the Baum-
Welch algorithm (explained e.g. in [11]).

The model was trained for four different feature sets: {∆x, ν},
{∆x, ν, a}, {∆x, ν, m}, and {∆x, ν, a, m}. The number of fea-
tures in a set is equal to the length of the observation vector o. The
features are here assumed to be statistically independent of each
other. The number of states was varied from one to five and the
number of Gaussian mixture model (GMM) components η in the
observation likelihood distributions from one to six.

Figure 3 shows the trained observation likelihood distributions
for a three-state note model using all the features. The model states
1, 2, and 3 could be interpreted as transient, sustain, and silence
segments of a note event, respectively. The transient segment of
note events exhibits a wide-spread accent-value distribution, typi-
cal meter values near one expressing the occurrence of tatum beats,
and some variance in the values of ∆x. During the sustain stage,
the variance of ∆x is small, the frames are mostly voiced, and the
accent and meter values are smaller. Eventually in the silence state,
∆x values spread, and voicing becomes bimodal. This shows that
some of note events include silence or noise at the end of the events,
usually as a consequence of breathing or consonants between notes.
These distributions express the typical behaviour of the musical fea-
tures during note events.

3.2. Musicological model

The musicological model controls transitions between notes in a
probabilistic manner based on the fact that some note sequences are
more common than others in a certain musical key. Figure 4 shows
two three-note sequences in C major key. Despite only a semitone
difference in the last notes, the first sequence is significantly more
common than the second one in this musical context. Given the
key of C major and an ambiguous note estimate between the last
notes, the musicological model would prefer the first sequence, thus
producing a musically more meaningful note sequence.
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Musical key is roughly defined by the basic note scale used in
a song. The first note of the scale is called a tonic note. Here tonic
notes kmaj, kmin ∈ {0, 1, . . . , 11} where the values 0, 1, . . . , 11
correspond to the major and minor keys with tonic notes C, C],
D, . . . , B. If major and minor scales consist of the same notes, the
scales are considered to be relative, thus defining a relative-key pair
for which the tonic notes obey

kmaj = mod(kmin + 3, 12) ⇔ kmin = mod(kmaj + 9, 12), (8)

where mod is the modulus-after-division operator. The musicologi-
cal model first finds the most probable relative-key pair for the entire
song and then uses this key pair to determine transition likelihoods
for note sequences.

The most probable key pair is determined by using a musical
key estimator proposed and evaluated in [5]. The method produces
likelihoods for keys kmaj, kmin from the voiced pitch estimates here
rounded to the nearest MIDI note numbers in a performance. The
likelihoods of relative major and minor keys are summed together
and the key pair with the highest likelihood is chosen.

Note N -gram probabilities for N ∈ {2, 3} were estimated by
counting the occurrences of different note sequences in the EsAC
melody database [12] of which over half a million note sequences
were used. A note sequence is specified by N intervals (i.e., dif-
ferences in the pitches of two notes) one of which is the interval
between the first note of the sequence and the tonic note of the
song, and the remaining N − 1 intervals are the intervals between
successive notes in the sequence. The counted occurrence proba-
bilities were smoothed with the Witten-Bell discounting algorithm
[13], producing the probabilities for note bigrams and note trigrams
given the key k of the song, i.e., P (nt = j|nt−1 = i, k) and
P (nt = j|nt−2 = h, nt−1 = i, k). Given the previous note(s)
and the relative-key pair, the likelihood to move to note j is the sum
of likelihoods P (nt = j|·, kmaj) and P (nt = j|·, kmin) divided by
two. If key estimation is disabled, we use the sum of note-sequence
likelihoods over all keys divided by 24, i.e., the number of keys. If
the musicological model is completely disabled, we use equal tran-
sition likelihoods for all note transitions.

3.3. Note model and musicological model combined

The note model and the musicological model constitute a proba-
bilistic note network illustrated in Figure 5. The network consists of
the note models and transitions between them controlled by the mu-
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Figure 6: A melody transcribed with the system. The dotted vertical
lines denote the reference note beginnings in the input panel and the
transcribed note beginnings in the output panel.

sicological model. Notice that the figure represents the note mod-
els at every time instant even though there actually exists only one
note model for each MIDI note (not for every time instant). The
network is used to transcribe melodies by finding the most prob-
able path through the network according to the likelihoods given
by the note models and the musicological model. In particular, the
between-note transitions are weighted by a scalar constant to match
the dynamic ranges of the models.

The optimal path is found using the Token-passing algorithm
[7]. The algorithm propagates tokens through the network. Each
note model state increments the weight of the tokens by the ob-
servation likelihoods and the transition probabilities between the
states. When a token is emitted out of a note model, we have a note
boundary which is appended to a list of boundaries for the sake
of backtracking later on. The musicological model increments the
token weights at transitions between note models, considering the
previous note models that tokens have visited. Eventually, the op-
timal note path is defined by the lightest token propagated through
the network, and the corresponding note sequence is found by back-
tracking the list of note boundaries.

Figure 6 shows a transcription example. The upper panel shows
pitch estimates extracted from a singing performance and the lower
panel compares the transcribed notes with the reference notes. The
system performs a reliable segmentation of notes as a consequence
of using the without-skips note HMM. As an example, consider the
time interval 11–13 seconds in the figure where a sequence of notes
with identical pitches is correctly segmented.

4. Simulation results
The proposed melody-transcription system is evaluated using 57
melodies performed by two male and two female singers from the
same acoustic database that was used to train the note models. The
test signals were not included in the training set. For a more appro-
priate evaluation of the system, the test signals should be performed
spontaneously without accompaniment and to use manual transcrip-
tions as references. However, the current evaluation scheme pun-
ishes also for sung notes that clearly differ from the accompani-
ment reference or miss entirely which would be taken into account
in manually transcribed references.

Different simulation setups are defined by varying the follow-



Feature set Ef En

{∆x, ν} 10.3 10.3
{∆x, ν, a} 9.2 9.6
{∆x, ν, m} 10.3 9.4

{∆x, ν, a, m} 9.1 9.9

Table 1: The best results of each note-model feature set.

ing parameters: (i) the number of note-model states K, (ii) the num-
ber of GMM components η for the note-model observation distribu-
tions, (iii) the used musical-feature set for the note model, (iv) the
length of note N -grams, (v) enabling of the key estimation, and (vi)
enabling the use of the musicological model.

4.1. Evaluation criteria

The transcription system is quantitatively evaluated by measuring
the difference between the reference melodies and the transcribed
melodies. Two evaluation criteria are used: a frame-based criterion
and a note-based criterion.

The frame-based evaluation criterion is defined by the num-
ber of correctly transcribed frames ccor and the number of voiced
frames cref in the reference melody. A frame is considered to be
correctly transcribed, if the transcribed note equals to the reference
note in that frame. The evaluation database contains performances
that are slightly unsynchronised in time compared to the reference
melodies. This is compensated by considering two note values at
the reference-note boundaries to be correct within a ±50 ms dis-
tance from the note boundary (i.e., ±2 frames). The frame error
Ef for a transcribed melody is defined as

Ef =
cref − ccor

cref

· 100%. (9)

In contrast to the frame-based evaluation, the note-based evalu-
ation criterion uses notes rather than frames as the evaluation units.
The note-based evaluation is symmetrically approached from both
the reference and the transcribed melodies’ point of view. First, we
count the number of reference notes that are hit by the transcribed
melody and denote this number with čR. A reference note is hit, if a
note in the transcribed melody overlaps with the reference note both
in time and in pitch. Second, the same scheme is applied so that the
reference and transcribed melody exchange roles, i.e., we count the
number of transcribed notes that are hit by the reference melody
and denote the count with čT . The note error En for a transcribed
melody is then defined as

En =
1

2

„

cR − čR

cR

+
cT − čT

cT

«

· 100%, (10)

where cR is the number of reference notes, and cT is the number
of transcribed notes. The frame and note errors are calculated for
each individual melody in the evaluation database and the average
of these is reported.

4.2. Results

The melody-transcription system achieved error rates below 10 %
with both evaluation criteria. The best results for different feature
sets are presented in Table 1. By using a simple rounding of pitch
estimates to the nearest MIDI notes, the corresponding frame er-
ror in the database was 20.3 %, whereas the feature set with pitch
difference and voicing {∆x, ν} achieved error percentages slightly
over 10 %. When the accent feature a was included in the note

H
H

H
HH

K
η

1 2 3 4 5 6 criterion

1 90.4 15.2 16.2 15.9 15.9 15.6 Ef

64 19.5 18.4 18.6 18.3 18.2 En

2 72.8 12 13.9 13.2 13.1 13.2 Ef

61.2 15.2 16.9 16 16.1 16.1 En

3 17.9 9.2 9.7 9.9 9.8 10 Ef

18.1 10.2 10.6 10.4 10 10.2 En

4 18.8 9.4 9.8 10.1 9.8 10.2 Ef

18.8 10.3 9.8 10 9.6 9.9 En

5 16.6 10.3 10.5 10.1 10.1 10.4 Ef

15.3 11.2 11.2 10.4 10.4 10.4 En

Table 2: Error rates for the feature set {∆x, ν, a} using key estima-
tion and note bigrams.

model, error percentages decreased by approximately one percent-
age unit for both the frame and the note error criterion. Further,
replacing the accent feature with the meter feature m reduced note
errors and achieved the best performance according to the note error
criterion; however, frame errors were increased. On the other hand,
the fourth feature set including all the proposed features reached
the best performance according to the frame-error criterion. All the
best-performance setups used key estimation and note bigrams.

Table 2 shows the error percentages when using the feature set
{∆x, ν, a}, key estimation, and note bigrams. The table shows
clearly the influence of the number of note-model states K and the
number of GMM components η. The first column of the table shows
the cases where only one GMM component (η = 1) is used and the
number of states is varied; the error percentages decrease when the
number of states in the note model is increased. Similar trend can
be observed by fixing the number of states to 1 and varying the
number of components. However, increasing the number of states
or GMM components does not significantly improve transcription
results after using three or four states in the note model and two
GMM components. The increase of components reduces the gen-
erality of the note model, and the increase of model states does not
improve the temporal-separation accuracy of note events. The best
results were achieved by using three or four states and two to five
GMM components in the observation likelihood distributions.

Figure 7 shows the best results for each feature set when the
musicological model was not used, key estimation was either en-
abled (on) or not enabled (off), and note N -gram length was either
2 or 3. Surprisingly, by disabling the musicological model, the sys-
tem performed approximately as well as using note bigrams without
key estimation, meaning that the good performance of the system is
mostly a consequence of using the note model. Using key estima-
tion in the musicological model clearly improves the system perfor-
mance, but it was unexpected that the use of note bigrams with key
estimation produces a slightly better performance than using note
trigrams. An explanation for this could be that the trained trigrams
are too specific to the training material (which differs from the test
material) when they are used with key estimation. However, if key
estimation was disabled, note trigrams performed better.

5. Conclusions

In this paper, a method was described for transcribing monophonic
melodies. The method was based on a probabilistic note event
model and a musicological model. The resulting system produced
transcribed note sequences from acoustic inputs quite accurately.
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Figure 7: The influence of the musicological model and its parame-
ters to the best results of each feature set.

The transcription system halved the amount of errors compared to
a simple rounding of pitch estimates that was mostly due to the use
of the note model. In addition, the note model segmented notes,
enabling the possible quantisation of note lengths. Key estimation
was important in reducing the amount of errors.

The transcription system can be easily extended in the future.
New kinds of musical feature extractors can be used as a front-end
to the note event model. The note model can be straightforwardly
trained for other instruments than human voice, too, and the mu-
sicological model can be extended with new musicological rules.
The system could transcribe polyphonic music by allowing several
melodic lines to be handled simultaneously and by providing an ap-
propriate front-end for multipitch estimation.
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