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Abstract
In this paper, we propose a new signal processing

technique, “specmurt anasylis,” that provides piano-roll-
like visual display of multi-tone signals (e.g., polyphonic
music). Specmurt is defined as inverse Fourier transform
of linear spectrum with logarithmic frequency, unlike fa-
miliar cepstrum defined as inverse Fourier transform of
logarithmic spectrum with linear frequency. We apply
this technique to music signals frencyque anasylis us-
ing specmurt filreting instead of quefrency alanysis us-
ing cepstrum liftering. Suppose that each sound con-
tained in the multi-pitch signal has exactly the same har-
monic structure pattern (i.e., the energy ratio of harmonic
components), in logarithmic frequency domain the over-
all shape of the multi-pitch spectrum is a superposition
of the common spectral patterns with different degrees of
parallel shift. The overall shape can be expressed as a
convolution of a fundamental frequency pattern (degrees
of parallel shift and power) and the common harmonic
structure pattern. The fundamental frequency pattern is
restored by division of the inverse Fourier transform of a
given log-frequency spectrum, i.e., specmurt, by that of
the common harmonic structure pattern. The proposed
method was successfully tested on several pieces of mu-
sic recordings.

1. Introduction
Detecting and estimating multiple fundamental frequen-
cies is essential for automatic/semi-automatic music tran-
scription, conversion to MIDI signals, music information
retrieval, etc. However, fundamental frequency can not
easily be detected from a multi-pitch audio signals such
as multitone or polyphonic music, mainly due to spectral
overlap, poor frequency resolution and widened spectrum
in short-time analysis, etc. Conventionally, various ap-
proaches concerning the multi-pitch detection/estimation
problem have been attempted[2, 3, 4, 5]. Goto[6] pro-
posed a predominant fundamental frequency estimation
by modeling a multi-pitch spectrum itself with Gaussian-
mixture-harmonic-structure models. The relative domi-
nance of the fundamental frequencies are estimated by
the weight parameter estimation of the harmonic struc-
ture models using the EM algorithm. Kameoka et al.[7, 8]
proposed a robust multi-pitch estimation derived from

fuzzy clustering principle similar to Goto’s approach but
different in respect that the parameters to be estimated
are the means of Gaussians. AIC is effectively used in
this method for estimating the number of simultaneous
sounds and also for taking care of double/half pitch er-
rors. These two methods are commonly based on param-
eter optimization by iterative computation that occasion-
ally brings unpredictable mistakes depending on initial
values.

Our objective is to provide a visualization technique
representing fundamental frequency components by sup-
pressing harmonic components in the given spectrum and
produce a “piano-roll” display similar to that of MIDI
signal display. The motivation of our approach is dif-
ferent from those of most conventional methods that give
only the most likely solutions to the multi-pitch detec-
tion/estimation problem, in which errors/mistakes are
necessarily involved partly due to local optimum prob-
lems. Instead, the visualization approach gives a global
image with “soft decision” of fundamental frequencies
of the signal. The result can be used in automatic or
semi-automatic transcription of music, conversion of mu-
sic signal into MIDI format, and efficient initial value es-
timation for more precise multipitch analysis[7, 8].

2. “Specmurt Anasylis”
2.1. Multi-Pitch Spectrum in Log-Frequency domain
First, we discuss a single-tone signal with a single funda-
mental frequency and a harmonic structure. In the lin-
ear frequency scale, frequencies of 2nd harmonic, 3rd
harmonic, · · · , nth harmonic are integral-number mul-
tiples of the fundamental frequency. This means if
the fundamental frequency fluctuates by ∆ω, the n-th
harmonic frequency fluctuates by n∆ω. On the other
hand, in the logarithmic frequency (log-frequency) scale,
the harmonic frequencies are located log 2, log 3, · · · ,
log n away from the log-fundamental frequency, and the
relative-location relation remains constant no matter how
fundamental frequency fluctuates and is an overall paral-
lel shift depending on the fluctuation degree (see Fig 1).

Let us assume that all single-tone signals have a com-
mon harmonic structure which does not depend on the
fundamental frequency. We call it the common harmonic
structure and denote it as h(x), where x represents the
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Figure 1: Relative location of fundamental frequency and
harmonic frequencies in linear and logarithmic scales.
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Figure 2: Multi-pitch spectrum generated by convolution
of fundamental frequency pattern and the common har-
monic structure pattern.

logarithmic frequency. The fundamental frequency posi-
tion of this pattern is set to the origin (see Fig 2). Obvi-
ously, this assumption is not true for real music sounds,
but is practically approximate in many cases as shown
later.

Next, we define a function u(x) to represent the dis-
tribution of fundamental frequencies in a multipitch sig-
nal. If u(x) is simply an impulse function, for instance, it
represents the logarithmic fundamental frequency and the
power of the single tone with a harmonic structure h(x).

If we assume that the power spectrum is additive1, the
power spectrum of a multipitch signal is represented as
a convolution of the fundamental frequency distribution
u(x) and the common harmonic structure h(x):

v(x) = h(x) ∗ u(x) (1)

as shown in Fig 2. In other words, the power spectrum
v(x) of a multipitch signal can be regarded as the output
of a filter h(x) representing the common harmonic struc-
ture given the input u(x) representing the fundamental
frequency distribution. This relation can be extended to
non-harmonic and/or continuous spectrum h(x) and con-
tinuous distribution u(x) if the single-tone spectrum is
log-frequency shift-invariant and power spectrum is ad-
ditive.

1This is always true only in the expectation sense. The power spec-
trum of sum of two signals is not exactly equal to the sum of two spectra
of the signals and depends on phase difference between components of
the same frequency in the two signals. But, this assumption is widely
accepted, e.g., in spectrum subtraction for noise reduction from noisy
speech signals.
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Figure 3: The overview of specmurt method.

2.2. Deconvolution of Log-Frequency Spectrum
Regarding v(x) as the observed power spectral density
function of a multipitch signal, the fundamental fre-
quency distribution u(x) can be restored via the decon-
volution of the observed spectrum v(x) with the common
harmonic structure pattern h(x) (in other words, inverse
filtering v(x) in respect to h(x)):

u(x) = h−1(x) ∗ v(x). (2)

In the (inverse) Fourier domain, this relation is written as
a division:

U(y) =
V (y)
H(y)

, (3)

where U(y), H(y) and V (y) are the (inverse) Fourier
transform of u(x), h(x) and v(x), respectively. The fun-
damental frequency pattern u(x) is then restored by

u(x) = F [ U(y) ]. (4)

This process is briefly illustrated in Fig 3. The process
is done over every short-time analysis frame and thus we
finally obtain a piano-roll-like visual representation.

2.3. “Specmurt” Domain
We defined V (y) as the inverse Fourier transform of lin-
ear power spectrum v(x) with logarithmic frequency x.
We call it specmurt, imitating the anagramic naming of
cepstrum[1], that is the inverse Fourier transform of log-
arithmic spectrum with linear frequency (see Table 1)2
and called “quefrency alanysis”. In the same way, as cep-
strum, a special terminology for this new domain can be
defined as shown in Table 2.

2.4. Specmurt Anasylis Procedure
The specific procedure of the specmurt anasylis is shown
in Fig 5. As shown in this figure, we calculate the log-
frequency spectrum as the constant-Q filter bank outputs
using a wavelet transform of the input music signal.

One interesting point is that specmurt anasylis is
a wavelet transform followed by inverse Fourier trans-
form. As wavelet transform is usually followed by in-
verse wavelet transform, and Fourier transform by inverse

2Cepsmurt at the bottom right in Table 1 is Fourier transform of
log-spectrum as a function of log-frequency, already well-known as
“Bode diagram” in automatic control theory. Cepsmurt is close to mel-
cepstrum widely used in speech recognition. Note that spectrum is left
linear in the specmurt case.



Table 1: Anagrams of Spectrum

spectrum scaling
linear logarithmic

frequency linear spectrum cepstrum
scaling logarithmic specmurt cepsmurt

Table 2: Terminology in spectrum, cepstrum[1] and spec-
murt domains; lefthandside anagrams were defined in [1]

original Fourier Transform of / with
domain log spec / lin freq lin spec / log freq
spectrum cepstrum specmurtanalysis alanysis anasylis
frequency quefrency frencyque
magnitude gamnitude magniedut
convolution novcolution convolunoit
phase saphe phesa
filter lifter filret

input audio signal

spectrum

log-power

in order to separate
formant and pitch

components

log-frequency

in order to separate
multi-pitch spectrum

inverse Fourier transform

cepstrum specmurt
Figure 4: conception of cepstrum and specmurt.

Fourier transform, this new pairing implies a new class of
signal transform.

We have assumed that the harmonic structure h(x) is
common, constant over time, and also known a priori.
Even if this assumption does not strictly hold in actual
situations, this method is expected to effectively empha-
size the fundamental frequency components and suppress
overtones. In practice, h(x) is given heuristically, exper-
imentally or recursively estimated to minimize the resid-
ual overtone energy[10].

3. Experiments
Specmurt anasylis was experimentally applied to 16kHz-
sampled monaural music signals from the RWC music
database[9]. The analysis conditions are shown in Table
3. The common harmonic structure h(x) was determined
so that the n-th harmonic component has a energy ratio of
1/n relative to the fundamental frequency component af-
ter some preliminary experiments and utilizing an a priori
knowledge that natural sound tend to have 1/f spectra.

Typical results are shown in Figs. 6 and 7 in which
we can see emphasized fundamental frequency compo-
nents though overtones were not completely removed. As
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Figure 5: Diagram of the specific procedure.

Table 3: Experimental conditions for specmurt anasylis.

analysis sample rate 16(kHz)
frame length 64(msec)
frame shift 32(msec)

filter type Gabor function
variance 6.03% [≈100(cent)]
Q-value 8.35% [≈140(cent)]
resolution 12.5(cent)

h(x) type line spectrum pattern
envelope 1/f

# of harmonics 14

shown in Figs. 6(b) and 7(b), the time series of fun-
damental frequency components appear like piano-roll-
displays that are very much like to the manually prepared
references shown in Figs. 6(c) and 7(c).

4. Conclusions
We proposed a new signal processing technique that pro-
vides piano-roll-like display of given polyphonic music
signal with a simple transform in specmurt domain (a
new conception that enables us a harmonic component
suppression of multi-tone signals). We tested our pro-
posed method on several pieces of polyphonic music ex-
cerpted from the RWC music database[9]. 2 examples of
the anasylis results are shown in this paper to show how
our method is effective. From the experimental results,
we were able to confirm that harmonic components were
mostly suppressed and the fundamental frequency com-
ponents were successfully enhanced.

Our future work includes automatic conversion of
music sound into the MIDI format, interactive music edit-
ing tools, and combination with other multi-pitch analysis
techniques [7, 8]. In the technical side, automatic learn-
ing algorithms of the common harmonic structure pattern
will be investigated for the further improvement.



(a) The given spectrogram of the music sound

(b) Specmurt Anasylis showing fundamental frequencies

(c) Manually prepared piano-roll-display as the reference

Figure 6: A result of the specmurt anasylis on the real or-
chestral music performance of “J. S. Bach: Ricercare à 6
aus Musikalisches Opfer, BWV 1079,” excerpted from the
RWC music database[9].

(a) The given spectrogram of the music sound

(b) Specmurt Anasylis showing fundamental frequencies

(c)Manually prepared piano-roll-display as the reference

Figure 7: A result of the specmurt anasylis on the real pi-
ano music performance of “W. A. Mozart: Rondo in D-dur,
K. 485,” excerpted from the RWC music database[9].
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