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Abstract

Speaker models for blind source separation are typically
based on HMMs consisting of vast numbers of states to cap-
ture source spectral variation, and trained on large amounts
of isolated speech. Since observations can be similar be-
tween sources, inference relies on sequential constraints
from the state transition matrix which are, however, quite
weak. To avoid these problems, we propose a strategy of cap-
turing local deformations of the time-frequency energy dis-
tribution. Since consecutive spectral frames are highly cor-
related, each frame can be accurately described as a nonuni-
form deformation of its predecessor. A smooth pattern of
deformations is indicative of a single speaker, and the cliffs
in the deformation fields may indicate a speaker switch. Fur-
ther, the log-spectrum of speech can be decomposed into two
additive layers, separately describing the harmonics and for-
mant structure. We model smooth deformations as hidden
transformation variables in both layers, using MRFs with
overlapping subwindows as observations, assumed to be a
noisy sum of the two layers. Loopy belief propagation pro-
vides for efficient inference. Without any pre-trained speech
or speaker models, this approach can be used to fill in miss-
ing time-frequency observations, and the local entropy of the
deformation fields indicate source boundaries for separation.

1. Introduction

In situations where two or more speakers speak simultane-
ously, we may wish to be able to separate the speech from
the individual speakers. Conventionally, this is referred to as
the speaker-separation or source-separation problem.

A popular approach to speaker separation is through the
use of multiple microphones. Solutions typically require at
least as many microphones as signal sources, and separation
is performed using techniques such as Independent Com-
ponent Analysis (ICA). This approach does not utilize any
knowledge of the statistical characteristics of the signals to
be separated, other than the very loose assumption that the
various signals are statistically independent [1]. This ap-
proach can fail when, for instance, signals are recorded in a
reverberant environment, or the degree of overlap and/or the
dimensionality of the observations make the blind inference

problem irresolvable.

A completely different approach uses extensive prior in-
formation about the statistical nature of speech from in-
dividual speakers, usually represented by dynamic mod-
els [2, 3, 4]. The spectral parameters of the models are com-
posed of hundreds or even thousands of states describing all
possible log-spectra of each source to an adequate level of
detail. Learning such a large number of parameters from
composed signals is practically impossible, so such mod-
els are learned using clean speech utterances of the corre-
sponding speaker. The models are used to separate combined
speech signals using the “refiltering” technique introduced in
[2]. A significant problem with this approach is the require-
ment for large amounts of training data to accurately capture
the complexity and variability of a particular speaker.

Here, we propose a new technique that has some re-
semblance to both of these approaches, exploiting very gen-
eral properties of certain audio sources including speech and
musical instruments by modeling the evolution of their har-
monic components. Using the common source-filter model
for such signals, we devise a layered generative graphical
model that describes these two components in separate lay-
ers: one for the excitation harmonics, and another for reso-
nances such as vocal tract formants. This layered approach
draws on successful applications in computer vision that use
layers to account for different sources of variability [5, 6, 8].
Our approach explicitly models the self-similarity and dy-
namics of each layer by fitting the log-spectral representation
of the signal in frame ¢ with a set of transformations of the
log-spectra in frame ¢ — 1. As a result, we do not require
separate states for every possible spectral configuration, but
only a limited set of initial states that can cover the full spec-
tral variety of a source through such transformations, so that
the signal can be “tracked” from the context or “matched”
to an initial state. This factoring of the sources of variabil-
ity results in a model with very few parameters that could be
learned from composed data without supervision.

We will first introduce a model that captures the spec-
tral deformation field of the speech harmonics, and show
how this can be exploited to interpolate missing observa-
tions. Then, we introduce the two-layer model that sepa-
rately models the deformation fields for harmonic and for-

Workshop on Satistical and Perceptual Audio Processing SAPA-2004, 3 Oct 2004, Jeju, Korea



X3

.................... X8

| Transformation :

matrix T Xt

00100 |rX?

00010« = |X?
00001 X ness

Np=5 X

----------------- X:

Xt

Figure 1: The N¢ = 3 patch of time-frequency bins outlined
in the spectrogram can be seen as an “upward” version of the
marked Np = 5 patch in the previous frame. This relation-
ship can be described using the matrix shown.
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Figure 2: a) Graphical model b) Graphical simplification.

mant resonance components, and briefly describe a range of
existing applications including semi-supervised source sepa-
ration. Finally we describe the matching-tracking model in-
cluding the initial states, and discuss its application to the
unsupervised source separation task.

2. Spectral Deformation Model

Figure 1 shows a narrow band spectrogram representation
of a speech signal, where each column depicts the energy
content across frequency in a short-time window, or time-
frame. The value in each cell is actually the log-magnitude
of the short-time Fourier transform; in deciBels, th =
log(abs(Z]TVj(;l wlr)z[r —t - H]e 7277F/Nr)) where t is
the time-frame index, k£ indexes the frequency bands, Np
is the size of the discrete Fourier transform, H is the hop
between successive time-frames, w[7] is the Np-point short-
time window, and z[7] is the original time-domain signal. We
use 32 ms windows with 16 ms hops and 1024-points FFTs.

Using the subscript C' to designate current and P to in-
dicate previous, the model predicts a patch of N¢ time-
frequency bins centered at the k' frequency bin of frame
t as a “transformation” of a patch of Np bins around the kth
bin of frame £ — 1, i.e.

ngfno,lH»nc] ~ Tf . Xgliflnp,kJrnP] (1)

where n¢ = (N¢ — 1)/2, np = (Np — 1)/2, and TF is
the particular N x Np transformation matrix employed at
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Figure 3: Example transformation map showing correspond-
ing points on original signal.

that point on the time-frequency plane. We use overlapping
patches to enforce transformation consistency [8].

Figure 1 uses an example with No = 3 and Np = 5
to illustrate the intuition behind this approach. The selected
patch in frame ¢ can be seen as a close replica of an upward
shift of part of the patch highlighted in frame ¢ — 1. This
“upward” relationship can be captured by a transformation
matrix such as the one shown in the figure. The patch in
frame ¢ — 1 is larger than the patch in frame ¢ to permit both
upward and downward motions. The generative graphical
model for a single layer is depicted in figure 2. Nodes X' =
(X1, X2, ..., XF ..., XX} represent all the time-frequency
bins in the spectrogram. For now, we consider the continuous
nodes X as observed, although below we will allow some of
them to be hidden when analyzing the missing data scenario.
Discrete nodes 7 = {T{,TZ,...,TF, ..., TX} index the set
of transformation matrices used to model the dynamics of
the signal. Each N¢o x Np transformation matrix T is of the

form:
w 00

(¥:8) @
i.e. each of the N¢ cells at time ¢ predicted by this matrix is
based on the same transformation of cells from ¢ — 1, trans-
lated to retain the same relative relationship. Here, No = 3
and w is a row vector with length Ny = Np — 2; using
w = (0 0 1) yields the transformation matrix shown in fig-
ure 1. To ensure symmetry along the frequency axis, we
constraint No, Np and Ny to be odd. The complete set
of w vectors include upward/downward shifts by whole bins
as well as fractional shifts, with these choices we tried to
emulate the dynamics most frequently observed on the spec-
tograms, (upward/downward motions with some optional
spreading, i.e. fractional shifts). Since we are interested in
modelling the dynamics of the energy rather than its ampli-
tude changes, we constraint them such that the summation of
their components is equal to one. An example set, containing
each w vector as a row, is:
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The length Ny of the transformation vectors defines the sup-

porting coefficients from the previous frame X,[fk__lnw’kJ”"W]

(where ny = (Nw — 1)/2) that can “explain” X}.
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Figure 5: Missing data interpolation example a) Original, b) Incomplete, c¢) After 10 iterations, d) After 30.
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Figure 6: Formant tracking map for clean speech (left panels) and speech in noise (right panels).

Figure 4: Graphical representation of the two-layer source-
filter transformation model.

For harmonic signals in particular, we have found that
a model using the above set of w vectors with parameters
Nw =5, Np = 9and N¢o = 5 is very successful at captur-
ing the self-similarity and dynamics of the harmonic struc-
ture. The transformations set could, of course, be learned,
but in view of the results we have obtained with this prede-
fined set, we defer the learning of the set to future work.

The clique “local-likelihood” potential between the time-
frequency bin X/, its relevant neighbors in frame ¢, its rel-
evant neighbors in frame ¢ — 1, and its transformation node
T} has the following form:

" (){z[ek—nc,k-‘rnc]7 Xi[sk—_lnp7k+n}3]a Ttk> _

N (XY[tkfnc,kJrnc] : fogk_flnp,k+np] , E[k—nc,k+nc]) (4)

Diagonal matrix X1*—mc.k+ncl which is learned using the
exact M-step for this parameter on the EM algorithm, has
different values for each frequency band to account for the
variability of noise across frequency bands. Here noise
accounts for other sources of energy variability not ac-
counted by the model. For the transformation cliques, the
horizontal and vertical transition potentials vp,o (T, T ;)
and Yy, (TF, Ttkfl), are represented by transition matrices.
These for the moment are set by experimentation, in general
we assign high self-probabilities and relative higher proba-
bilities to similar transformations. (The probability of going

from an upward transformation to another upward transfor-
mation is higher than the probability of going to a downward
transformation).

For observed nodes X', inference consists in finding
probabilities for each transformation index at each time-
frequency bin. Exact inference is intractable and is approx-
imated using Loopy Belief Propagation [9, 10]. Appendix
A gives a quick review of the loopy belief message passing
rules, and Appendix B presents the specific update rules for
this case. The transformation map, a graphical representa-
tion of the modes of the transformation node posteriors (the
most likely transformation used) across time-frequency, pro-
vides an appealing description of the harmonics’ dynamics
as can be observed in figure 3. In these panels, the links
between three specific time-frequency bins and their corre-
sponding transformations on the map are highlighted. Bin 1
is described by a steep downward transformation, while bin 3
also has a downward motion but is described by a less steep
transformation, consistent with the dynamics visible in the
spectrogram. Bin 2, in other hand, is described by a steep up-
wards transformation. These maps tend to be robust to noise
(as shown below), making them a valuable representation in
their own right.

3. Inferring Missing Data

If a certain region of cells in the spectrogram are missing, the
corresponding nodes in the model become hidden. This is il-
lustrated in figure 5, where a rectangular region in the center
has been removed and tagged as missing. Loopy belief in-
ference now requires continuous-valued messages, compli-
cating the procedure as explained in Appendix C. The com-
plexity of the continuous case requires the approximation of
some of those continuous messages by delta functions. (Ap-
pendix C). The figure shows the interpolated values inferred
by the model after a few iterations. The missing-data model
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Figure 7: First row: Harmonics/Formants decomposition (posterior distribution means). Row 2: Harmonics/Formants tracking
example. The transformation maps on both layers are used to track a given time-frequency bin. Row 3: Semi-supervised Two
Speakers Separation. a) The user selects bins on the spectrogram that she believes correspond to one speaker. b) The system
finds the corresponding bin on the transformation map. c) The system selects all neighboring bins whose transformations match
the ones chosen; the remaining bins correspond to the other speaker.

will be used below in the two layer source-filter model.

4. Two Layer Source-Filter Transformations

Many sound sources, including voiced speech, can be suc-
cessfully regarded as the convolution of a broad-band source
excitation, such as the pseudo-periodic glottal flow, perhaps
modeled as an impulse train, and a time-varying resonant
filter, such as the vocal tract, that ‘colors’ the excitation to
produce speech sounds or other distinctions. When the ex-
citation has a spectrum consisting of well-defined harmon-
ics, the overall spectrum is in essence samples of the filter’s
resonances at the frequencies of the harmonics. Convolu-
tion of the source with the filter in the time domain corre-
sponds to multiplying their spectra in the Fourier domain, or
an additive relationship in the log-spectral domain. Hence,
we model the log-spectra X as the sum of variables F' and
H, which explicitly model the formants and the harmonics
of the speech signal. The source-filter transformation model
is based on two additive layers of the deformation model de-
scribed above, as illustrated in figure 4. Variables F" and H in
the model are hidden, while, as before, X can be observed or
hidden. The symmetry between the two layers is broken by
using different parameters in each, chosen to suit the partic-
ular dynamics of each component. We use transformations
with a larger support in the formant layer (Ny = 9) com-
pared to the harmonics layer (Nyy = 5). This means that we
restrict the dynamics of the harmonics layer to slow changes
while modeling the rapid changes, characteristic of the vo-

cal track, in the formant layer. Since all harmonics tend to
move in the same direction, we enforce smoother transfor-
mation maps on the harmonics layer by using potential tran-
sition matrices with a higher self-loop probabilities. During
inference, we schedule the belief propagation messages in
such a way that energy in the spectogram, that follows the
characteristics encoded by the harmonics transformation set
and its dynamics, is assigned to the harmonics layer while the
dynamics and the form of the residual is left to be learned by
the formants layer. This is an iterative process.

An example of the transformation map (the most likely
transformation at each time-frequency bin) for the formant
layer is shown in figure 6, which illustrates how these maps
can remain relatively invariant to high levels of signal corrup-
tion; belief propagation searches for some kind of consistent
dynamic structure within the signal, and since additive noise
is less likely to have a well-organized structure, it is proper-
ties of the speech component that are extracted. Inference in
this model is more complex, but the actual form of the contin-
uous messages is essentially the same as in the one layer case
(Appendix C), with the addition of the potential function re-
lating the signal X} with its transformation components HF
and FF) at each time-frequency bin:

w(vaHzc)Ftk):N(Xi{c;Hzc_i_Ftk’gk) (5)

The first row of figure 7 shows the decomposition of a speech
signal into harmonics and formants components, illustrated
as the means of the posteriors of the continuous hidden vari-
ables in each layer.



5. Applications

We have built an interactive model that implements for-
mant and harmonics tracking, missing data interpolation, for-
mant/harmonics decomposition, and semi-supervised source
separation of two speakers.

Formants and Harmonics Tracking: Analyzing a sig-
nal with the two-layer model permits separate tracking of the
harmonic and formant ‘ancestors’ of any given point. The
user clicks on the spectrogram to select a bin, and the system
reveals the harmonics and formant “history” of that bin, as
illustrated in the second row of figure 7.

Semi-Supervised Source Separation: After modeling
the input signal, the user clicks on time-frequency bins that
appear to belong to a certain speaker. The demo then masks
all neighboring bins (immediate neighbors, the immediate
neighbors’ neighbors and so on) with the same value in the
transformation map; the remaining unmasked bins should be-
long to the other speaker. The third row of figure 7 depicts
an example with the resultant mask and the “clicks” that gen-
erated it. Although far from perfect, the separation is good
enough to perceive each speaker in relative isolation.

Missing Data Interpolation and Harmonics/Formants
Separation: Examples of these have been shown in figures
Sand7.

Features for Speech Recognition: The phonetic distinc-
tions at the basis of speech recognition reflect vocal tract fil-
tering of glottal excitation. In particular, the dynamics of
formants (vocal tract resonances) are known to be powerful
“information-bearing elements” in speech. We believe the
formant transformation maps may be a robust discriminative
feature to be use in conjunction with traditional features in
speech recognition systems, particularly in noisy conditions;
this is future work.

6. Matching-Tracking Model

Figure 8 b) illustrates the entropy of the distributions in-
ferred by the system for each transformation variable. The
third pane shows ‘entropy edges’, boundaries of high trans-
formation uncertainty. With some exceptions, these bound-
aries correspond to transitions between silence and speech,
or when occlusion between speakers starts or ends. Similar
edges are also found at the transitions between voiced and
unvoiced speech. High entropy at these points indicates that
the model does not know what to track, and cannot find a
good transformation to predict the following frames. We ex-
plicity model those frames that cannot be derived from their
predecessors, by introducing a new variable that accounts
for those “initial states”. We refer to this as the “matching-
tracking” model, represented graphically in the first row of
figure 8. One state/switch variable S; per time frame is con-
nected as a regular HMM on top of the two tracking layers.
But unlike a regular HMM, the S variables have a special
“tracking state” in which the model tracks the current obser-
vation values through deformations instead of matching it to

the most likely template. Hence, the model requires only a
small set of states, with a few states representing the pitch of
the speaker and a few others for unvoiced sounds.

The source separation problem can be addressed as fol-
lows: When multiple speakers are present, each speaker will
be modeled in its own layer, further divided into harmonics
and formants layers. The idea is to reduce the transforma-
tion uncertainty at the onset of occlusions by continuing the
tracking of the “old” speaker in one layer at the same time
as estimating the initial state of the “new” speaker in another
layer — a realization of the “old-plus-new” heuristic from psy-
choacoustics. This is part of our current research.

7. Conclusions

We have presented a harmonic/formant separation and track-
ing model that effectively identifies the different factors un-
derlying speech signals. We show that this model has a num-
ber of useful applications, many of which have already been
implemented in a working real-time demo. Previous research
has shown that single-microphone speech source separation
is possible given detailed models of the sources, but learning
those models in a unsupervised way from composed signals
is practically impossible. The model we have proposed in
this paper captures the detailed dynamics of speech with only
afew parameters, and is a promising candidate for sound sep-
aration systems that do not rely on extensive isolated-source
training data.

8. Appendices

A: Loopy Belief Propagation

The sum-product algorithm [12] can be used to approximate
inference on graphical models with loops. The algorithm up-
date rules applied to the factor graph representation of the
model are:

Variable to local function:

my—f(z) =

H My e () (6)

hen(z)\ f

Local function to variable:

mi—o(@) =Y fX) [ myslv) @

yen(f)\z

where X = n(f) is the set of arguments of the function f.
B: Update Rules for the Spectral Deformation Model
When variables th’ are observed, there are only discrete
messages in the algorithm. Applying the above update rules,
we obtain the following forward recursion for the horizontal
nodes on the grid:

k k(mk ik
Mk _pk (Ty) = (Z hy (T 7Tt71)mTt’“_lﬂhf
Tf

lic ()()[Jﬁ—NcIk-i-Nc]7 Xyi—lnpik-‘rnp] ’ Ttk)g(Ttkfl, Tthrl)
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Figure 8: Graphical model of the matching-tracking model; Entropy Map and Entropy Edges

where (T, TF*1) is the multiplication of the messages
coming from the adjacent vertical nodes. A similar backward
recursion can also be found. The messages for the vertical
chains can be updated through analogous upward/downward
recursions.

C: Loopy Belief with Continuous-Valued Messages

The message from the “local-likelihood” function 4 to vari-
able X has the form.

(
/ lexp%(aX;7Fy+z)/E[;l_nC:T+nC](ax;nyJrz)
Y,z C
N5 s )N (25 12, 52 )dydz - (9)

Values j and s can be either ¢ or £ — 1, and vector y is

formed by the values on X777 other than X 4 (or

the whole vector if j = ). Vectors z and X\~ Voirel

have an analogous relationship. Vector o and matrix I" come
from the most likely (or weighted mean) of the transforma-
tion matrix used at bin X]. To speed up the process, we
approximate N (y; iy, £y )N (2; p1, 2,) by delta functions
d(y — py) and 6(z — p.). Then the messages reduce to:
myr X (Xj) = %e:cp%(o‘X;*F”ﬁ“z)/Eil(aX%F#ﬁﬂz).

The posterior probability of node XF, ¢(XF), is equal
to the multiplication of all its incoming messages. We ap-
proximate this multiplication with a Gaussian distribution,
q(XF) = N(XF; fixp,¥xr). Minimizing their KL diver-
gence we find:

N, N _
Zi:01+ r O‘;Ei I(FiYi - Zz‘)
Yt ey e !

Jixr = (10)

The values displayed by the missing data application are
these mean values. The variable to local functions have the
same form as in equation 10, just subtracting the numerator
and denominator factor corresponding to the incoming mes-
sage from the corresponding function. Since we use diagonal
variances, parameters i, and (i, in 9 are found by concate-
nating the relevant p x parameters. When using the two layer
model, an extra message comes from node gF adding extra
factors in the numerator and denominator of equation 10.
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