
Model-Based Fusion of Bone and Air Sensors for Speech Enhancement and
Robust Speech Recognition

John Hershey, Trausti Kristjansson, Zhengyou Zhang

Microsoft Research
One Microsoft Way

Redmond, WA, USA
{hershey,traustik,zhang }@microsoft.com

Abstract
We present a probabilistic framework that uses a bone
sensor and air microphone to perform speech enhance-
ment for robust speech recognition. The system exploits
advantages of both sensors: the noise resistance of the
bone sensor, and the linearity of the air microphone. In
this paper we describe the general properties of the bone
sensor relative to conventional air sensors. We propose
a model capable of adapting to the noise conditions, and
evaluate performance using a commercial speech recog-
nition system. We demonstrate considerable improve-
ments in recognition – from a baseline of 57% up to
nearly 80% word accuracy – for four subjects on a dif-
ficult condition with background speaker interference.

1. Introduction
Automatic speech recognition systems are notoriously
susceptible to error in the context of interfering noise1.
This is especially true when the noise is a background
speaker, and it may be difficult to determine which voice
is intended for the speech recognizer. The speech re-
search group at Microsoft Research has recently been
exploring methods to address this problem using multi-
ple sensors, as part of an ongoing project called WITTY
(Who Is Talking To You).

One promising technology involves the use of a bone
sensor along with a conventional microphone. A bone
sensor is a microphone that directly touches the side of
a person's face directly in front of the ear. The bone
sensor can easily be incorporated into the standard head-
mounted headset with a close-talk air microphone. A pro-
totype of such a device is illustrated in Figure 1, and has
been described previously in [1].

The advantage of the bone sensor is that it is much
more immune to external interfering sounds than a reg-
ular microphone. However, the response to higher fre-
quencies, as well as to aspects of speech dynamics is
poor. (You can get a good impression of what it sounds

1We use the term noise in the sense of an interfering signal, without
implying anything about its statistical properties.

like by talking with your ears plugged.) Thus existing
speech recognition systems perform poorly when given
the bone signal as input. Unfortunately there is not
enough data recorded with such devices to create a rec-
ognizer especially tuned to bone signals.

Instead of direct recognition, we focus on enhancing
speech prior to recognition. Due to variability in the rela-
tionship between air and bone signals, it is a challenging
problem to map from one to the other. In this paper we
discuss the combination of an air microphone and a bone
sensor in a probabilistic framework to do speech recogni-
tion and speech enhancement.

Related work has been presented in [2], and [1], in
which different types of models were used. One impor-
tant difference between the current work and these works
is the principled inclusion of an adaptive noise model.

2. The Relationship Between Air and Bone
Signals

The air and bone microphones are sensitive to differ-
ent aspects of the speech signal, and their spectra differ
as a function of the speaker, the placement of the sen-
sors, and as a function of the articulation of speech itself.
The air sensor receives acoustic signals coupled primarily
through the mouth aperture (and somewhat less through
the nose), whereas the bone sensor receives vibrations
that are conducted from the rear of the vocal tract through
the facial anatomy. We can think about the relationship
between signals in the air and bone sensors in terms of
differences in the log amplitude spectra of the two sig-
nals.

A major difference between the two sensors is in the
overall frequency response of the signals they receive.
Due to its placement, the bone microphone picks up sig-
nals that have propagated through flesh and bone, which
absorbs high-frequency components of speech. Thus the
bone sensor receives predominantly low-frequency com-
ponents of speech, peaking sharply at around 400Hz, with
the response dropping by about 20 dB to a plateau stretch-
ing between 1KHz and 2.5KHz. For higher frequencies,
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Figure 1: Air and bone sensors mounted on a headset

attenuation increases to about 40dB at 4kHz, and remains
essentially at the noise floor thereafter (see Figure 2 and
3). The air microphone is sensitive to the full range of
speech frequencies.
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Figure 2: The difference in log magnitude between the
signal received at the air and the bone sensors. Error bars
indicate plus or minus one standard deviation.

The broad characteristics of the relationship between
air and bone sensor signals largely reflects the bone struc-
ture and facial tissue through which the signal propagates
to reach the bone sensor. These physical characteristics
can vary from speaker to speaker, altering the quality of
the signals. This effect can be termedspeaker depen-
dence. In addition, different placement of the air micro-
phone and bone sensor introduces further differences in
the signals. This effect may be termedplacement depen-
dence. In our experiments we assume both speaker and
placement dependence effects are stationary and control
them by training speaker-dependent models, and ensur-

ing that the sensor placement in training and test sets is
the same.

A particularly strong and non-stationary effect can be
termedarticulation dependence. Different speech phones
entail different distributions of source energy, and differ-
ent patterns of its coupling to the two sensors. These
physical differences result in pronounced differences in
the log spectra between the two sensors. Figure 3 illus-
trates the smoothed log spectrum of examples of the three
phones /A/, /n/, and /t/, taken from a single sentence, for
the air and bone sensors.

One effect of articulation derives from the closing
or stricture of the oral tract during speech. When the
mouth is open as in a vowel sound such as /A/, the acous-
tic energy is well coupled to both the air and bone sen-
sors. However when the mouth is restricted, as in a nasal
stop such as /n/, the acoustic coupling to the air sensor is
greatly attenuated relative to the bone sensor.

Another effect of articulation has to do with the lo-
cation and manner of the generation of acoustic energy.
Voiced speech sounds originate in the throat with the vo-
cal cords and are well transmitted to the nearby bone sen-
sors. In contrast, fricatives, such as /t/, are generated at
the place of articulation, as turbulent air passes through
an aperture in the mouth and are thus typically much
more readily transmitted to the air sensor than to the bone
sensor.

A third articulation effect is an artifact of the bone
sensor’s frequency response. Because the bone sensor is
effectively at the noise floor for frequencies above 2kHz,
differences in the log spectrum between air and bone sen-
sors will simply reflect the energy in the air sensor for
those frequencies. This energy varies greatly with the
phone, with fricatives such as /t/ having a great deal of
high-frequency energy, in contrast to nasal stops such as
/n/.

3. Models

We seek to capture the statistics of the relationship be-
tween air and bone signals in a model, in a way that al-
lows us to efficiently infer the air signal in the presence of
acoustic interference, or noise. The complex relationship
between the two sensors motivates a model that supports
a flexible mapping between the two.

A simple and tractable model that accomplishes this
is a Gaussian mixture model on the high-resolution log
spectra of each sensor, with the frequency components
conditionally independent given the state.

In previous work, a Mel-frequency scale was used for
compatibility with speech recognition systems designed
for clean speech. However it was subsequently discov-
ered that the greater frequency resolution of the linear fre-
quency scale (for a given window size) allows us to take
advantage of the harmonic structure of voiced speech [3].
Because the bone sensor preserves pitch well, but with a
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Figure 3: Smoothed log spectra received at the air (top)
and bone (bottom) sensors for three phones /A/ (as in
”ape”), /n/ and /t/, showing the differences in the rela-
tive patterns of the spectra in each sensor. In particular,
notice how the /n/ spectrum is dramatically attenuated in
the air sensor relative to the other phones, but not in the
bone sensor.

limited bandwidth, we suppose that suchhigh-resolution
models will allow us to extrapolate harmonics from the
bone sensor to the air sensor, and filter out noise between
the harmonics.

Whereas high-resolution models have the advantage
that they can focus on high signal-to-noise ratio peaks at
the harmonics, they also have the drawback that they re-
quire many states to represent the detail in the spectrum.
To avoid wasting representational resources on the atten-
uated components of the bone signal, which can have
negligible impact on the results, we simply discard bone
sensor frequency components above 4kHz from consid-
eration in the model.

3.1. Speech model

The model we propose is illustrated in Figure 4, and can
be defined as follows. Denote the log amplitude of a win-
dowed short time fourier transform of the clean air signal
and bone signal respectively, for frequencyf asxa

f and

xb
f . We form a mixture model onxa

f and xb
f with dis-

crete speech state assx. The conditional independence
assumptions in such a model are given by the following
factorization:

p(xa,xb,sx) = p(sx)∏
f

p(xa
f |sx)p(xb

f |sx) (1)

It is convenient to use a Gaussian forp(xa
f |sx) and

p(xb
f |sx). Let N(x;µ,σ) denote the univariate normal dis-

tribution defined onx with mean meanµ and varianceσ.
The model used in our experiments can then be formu-

lated as follows.

p(sx) = πsx

p(xa
f |sx) = N(xa

f ;µ
a
sx, f ,σ

a
sx, f )

p(xb
f |sx) = N(xb

f ;µ
b
sx, f ,σ

b
sx, f )

Note that this model is equivalent to a simple Gaus-
sian mixture model formulated on the concatenated air
and bone spectrum vectors. The parameterspis, µa

sx, f ,

µn
sx, f , σa

sx, f andσb
sx, f can thus be estimated from bone and

air microphone recordings in quiet conditions, using the
standard expectation maximization (EM) algorithm [4].
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Figure 4: Generative model for air and bone sensors.sx

is the discrete state,xa
f andxb

f are the log spectra at fre-
quency f of air and bone signals respectively. The plate
labeledF indicates that the series of frequency compo-
nents indexed byf are all all conditionally independent
given the statesx.

3.2. Noise Model

A similar model is posited for the noise.

p(sn) = πsn

p(na
f |sn) = N(na

f ;µ
a
sn, f ,σ

a
sn, f )

p(nb
f |sn) = N(nb

f ;µ
b
sn, f ,σ

b
sn, f )

Because the noise is usually unknown, we are interested
in adapting the parameters to the noise at test time. We
therefore use a small number of states to avoid over-
fitting. Section 5 describes the noise adaptation.

3.3. Sensor Model

To complete the model we have to specify how the speech
and noise combine in the air and bone sensors. Because
the speech and noise models are defined in the log spec-
trum, but the speech and noise signals are combined in the
linear spectrum with unknown phases, their combination
is nonlinear and results in analytically intractable distri-
butions for the observed sensor signals, and for the pos-
terior distribution of the hidden speech and noise compo-
nents. For simplicity we shall describe the model in terms
of a generic sensor signal model,yf , xf andnf , since the
same model applies to both air and bone sensors.



The model for a given frame of noisy speech in the
frequency domain is

Yf = Xf +Nf (2)

whereXf , Nf , andYf denote the complex Fourier trans-
form at frequencyf of the the clean signal, the noise,
and the noisy sensor signal respectively. This can also be
written in terms of the magnitude and the phase of each
component:

|Yf |∠Yf = |Xf |∠Xf + |Nf |∠Nf (3)

where|Yf | is the magnitude ofYf and∠Yf is the phase.
We model only the magnitude components and do not

explicitly model the phase components. The relationship
between the magnitudes is

|Yf |2 = |Xf |2 + |Nf |2 +2|Xf ||Nf |cos(θ) (4)

whereθ is the phase angle betweenX andN. Next we
take the logarithm, definingxf , ln |Xf |2, and likewise
for yf andnf . We arrive at the relationship in the high
resolution log-power-spectrum domain.

yf = ln
[
exp(xf )+exp(nf )

]
+ ε (5)

where

ε = ln
[
1+2cos(θ)

√
exp(xf +nf )

exp(xf )+exp(nf )
]

(6)

The formulation in terms ofxf plus a correction term will
be convenient for taking derivatives later. We approxi-
mateε as Gaussian noise, as in [5], and write this rela-
tionship in terms of a distribution over the noisy speech
featuresyf as

p(yf |xf ,nf ) = N(yf ; ln
[
exp(xf )+exp(nf )

]
,ψ) (7)

whereψ is the variance ofε. Duplicating this model for
both the air and bone sensors, and we can combine it with
the speech and noise models introduced above as illus-
trated in Figure 5.

4. Inference

For the purpose of signal reconstruction, we are interested
in the expected value of the clean speech given the noisy
speech in both the air and bone sensors, orE(xa|ya,yb),
where we write the components in vector form withxa ,
[xa

1...x
a
Fa]T , and similarly withxb, na, andnb. To do so

we have to estimate the posterior distributionp(xa|ya,yb).
The true posterior is a mixture of individual posteriors:

p(xa|ya,yb) = ∑
sx,sn

p(sx,sn|ya,yb)p(xa|ya,yb,sx,sn) (8)
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Figure 5: Model of air and bone speech signals (xa
f ,x

b
f ),

noise (na
f ,n

b
f ), and their interaction in bone and air sen-

sors (ya
f ,y

b
f ). Note that as indicated by the plate labeled

F , all the frequencies in both sensors are conditionally
independent given a combination of speech statesx and
noise statesn.

The individual mixture components decouple due
to conditional independence given the state, so
p(xa|ya,yb,sx,sn) = p(xa|ya,sx,sn), and we have:

p(xa|ya,sx,sn) =
1
z

p(xa|sx)
∫

p(ya|xa,na)p(na|sn)dna,

(9)
wherez is a normalizing constant. This posterior is non-
Gaussian and analytically intractable, due to the non-
linearity of p(ya|xa,na) in Equation 7. The state pos-
teriors, p(sx,sn|ya,yb) in Equation 8 are analyticaly in-
tractable for the same reason.

To solve this problem we iterate a Laplace method
to approximate the posteriors in a framework known as
Algonquin [5].

For notational convenience, we define

x ,
[

xa

xb

]
,n ,

[
na

nb

]
, andz,

[
x
n

]
,

so that we can write the mean of Equation. (7) in vector
form:

g(z) , ln
[
exp(xf )+exp(nf )

]
. (10)

If we linearize this function using a first order Taylor se-
ries expansion at the pointz0, we can write the linearized
version of the likelihood,

pl (y|x,n) = pl (y|z) = N(y;g(z0)+G(z0)(z−z0),Ψ)
(11)

wherez0 is the linearization point and

G(z0) =
[
diag

(
∂g(z)

∂x

)
,diag

(
∂g(z)

∂n

)]

z0

(12)



is a matrix of the derivatives ofg(z), evaluated atz0. We
can now write a Gaussian approximation to the posterior
for a particular speech and noise combination as

pl (x,n,y|sx,sn) = pl (y|x,n)p(x|sx)p(n|sn) (13)

For notational convenience we abbreviates , {sx,sn},
and defineσa

sx , [σa
sx,1, ...,σ

a
sx,Fa]T and similarly with

σb
sx,σa

sn,andσb
sn. We combine air and bone sensor param-

eters thus:

σsx ,
[

σa
sx

σb
sx

]
,σsn ,

[
σa

sn

σb
sn

]
, andΣs , diag−1

[
σsx

σsn,

]

and similarly withµa
sx,µb

sx,µa
sn,µb

sn. Ψ is a diagonal matrix
of the variances of Equation 7, which we set to a constant,
(i.e, Ψ = (.01)IFa+Fb). It can then be shown[5] that the
p(x,n|y,s) is jointly Gaussian with mean

ηs = Φs
[
Σ−1

s µs+G(z0)TΨ−1(y−g(z0)−G(z0)z0)
]

(14)
where

ηs ,
[

ηx
sxsn

ηn
snsn

]

and covariance matrix

Φs =
[
Σ−1

s +G(z0)TΨ−1G(z0)
]−1

, (15)

where

Φs ,
[

Φxx
sxsn Φxn

sxsn

Φnx
sxsn Φnn

sxsn

]

The posterior state probabilityp(s|y) can be shown to be

γs = |Σs|−1/2|Ψ|−1/2|Φs|1/2 ·exp

[
− 1

2
(µT

s Σ−1
s µs+

(y−g(z0)+G(z0)z0)TΨ−1(y−g(z0)+G(z0)z0)

−ηT
s Φ−1

s ηs)
]
. (16)

In the Algonquin algorithm, we attempt to iteratively
move the linearization points towards the mode of the true
posterior. In each iteration the mode of the approximate
posterior in the previous iteration is used as a lineariza-
tion point of the likelihood. The algorithm converges in
three to four iterations.

It is then a simple matter to find the marginal expected
value of the speech given the noise:

x̂a = ∑sγsηa
s

∑sγs
. (17)

Once the log spectral energies are inferred, we compute
magnitudes and combine them with the phases from the
air sensor, to resynthesize the enhanced waveform for a
given frame. The waveforms are overlapped and added
together across frames using a synthesis window derived
from the analysis window, such that the product of the
two windows overlapped and added across frames sums
to unity everywhere.

5. Adaptation

Noise conditions vary from one environment to the next.
We therefore wish to adapt the noise model to the cur-
rent noise conditions. Since the algorithm above provides
posteriors over the noise as well as the signal, we can
perform an extra adaptation step in which we adjust the
parameters of the noise model, as in [6]. This adapta-
tion comprises an M-step to in a generalized expectation-
maximization framework, to maximize the expected log-
likelihood of the data with respect to the posteriors.

The resulting update equations are:

π̂sn ←
〈

∑
sx

γsxsnt

〉

t
(18)

µ̂sn ←
〈

∑
sx

γsxsnt

π̂sn
ηn

sxsnt

〉

t
(19)

σ̂n
s ←

〈
∑
sx

γsxsnt

π̂sn
diag

[
Φnn

sxsnt + (20)

(ηn
sxsnt −µsn)(ηn

sxsnt −µsn)T]〉

t
,

where
〈 ·〉t denotes averaging over time. This can be done

in batch mode, as in the experiments presented here. Al-
ternately it can be handled via running averages for online
adaptation.

6. Results

We trained speaker-dependent speech models on a
database of four subjects (two males, two females) read-
ing 41 sentences from the Wall Street Journal. In the
training set, speakers were recorded in a quiet office en-
vironment with the air and bone sensors, and in the test
set they were recorded in the same environment with an
interfering male speaker talking loudly a short distance
away. The sound was 16-bit 16 kHz, and was processed
in 50ms windows in 256 frequency bands, and with a
frame shift of 20ms. We trained speech models using 512
states, although 256 states worked nearly as well. Noise
models had 2 states.

Prior to processing we smoothed the log spec-
trograms temporally by applying a smoothing kernel,
([1,2,1]1

4), across time frames in each frequency bin.
This reduces variance in the spectrum and stabilizes the
inference. In order to speed up testing we eliminated ex-
tremely unlikely states by approximating the likelihood
of ya andyb given the states by matching moments to the
log-normal sum (see [7] for a derivation) to estimate the
state posteriors for each frame. We then retained only the
four most likely speech states for each frame.

We explored two independent variables,sensor con-
dition andnoise mode. In order to compare enhancement
with just the air sensor (A sensor condition) to enhance-
ment with both the air and bone sensors (AB sensor con-
dition), we trained both air sensors models and air plus



bone sensor models. After looking at preliminary results,
we wondered if perhaps the bone sensor wasn’t having
enough influence on the inferred air signal. So we added
a third condition in which the speech state posterior was
determined solely on the basis of the bone sensor obser-
vation, rather than using both the air and bone sensors
(AB* sensor condition). Apart from the computation of
the state posteriors, the rest of the inference in this condi-
tion is the same as in the AB condition.

The noise model was always initialized using speech
detection on the bone microphone to determine how
much of the beginning segment of the file was free of
speech, with a minimum of 300ms being used. The
model was initialized by training on this detected noise
segment. We then compared performance without adap-
tation (Detectnoise mode) to performance with the adap-
tation (Adaptnoise mode) described in Section 5.

The enhanced results were tested using a commercial
speech recognition system, and are shown in Figure 6
averaged across the four subjects. Baseline percent ac-
curacy2 in the air microphone was 57.2% for the noisy
condition, and 92.66% for the clean. As we had hoped,
performance appears to be better with the bone sensor
than without, and better with adaptation than without. In
the AB* condition where we relied more heavily on bone
signals to do inference, performance was better still. The
best condition, AB* with adaptation yield accuracies of
around 79%, or a relative improvement in word error rate
of about 51%. Although we cannot make a strict com-
parison for lack of a standardized dataset, these results
compare favorably with prior art in [2], and [1].

7. Conclusion

We have demonstrated a model that exploits a bone sen-
sor combined with air microphone to produce noise adap-
tation speech enhancement results that are much better
than could be achieved with an air microphone alone. The
model we proposed posits conditional independence of
the bone and air signals given the state. We are currently
working on several improvements, including a model
with a direct state-dependent correlation between the air
and bone sensor. In informal analysis it seemed that
this correlation could help to distinguish the right speech
state. In the same context we are working on online noise
adaptation as well as adaptation to varying channel char-
acteristics, which may be important for the development
of a speaker independent system. In general, although re-
sults are preliminary, the bone sensor technology and the
proposed models appear very promising.

2Percent accuracy is100N−I−S−D
N , where where I is the number of

inserted words, S is the number of substituted words, D is the number
of deleted words and N is the total number of words in the transcription.
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Figure 6: Results: All numbers are percent accuracy (de-
fined in Footnote 2) of word recognition. Sensor condi-
tions are,A: air sensor only; AB: Air and bone sensors;
AB*: air and bone sensor with state posteriors derived
only from the bone sensor. Noise mode conditions are,
Detect: initialize the noise model with speech detection
on the bone sensor;Adapt: adapt to the noise in the test
sentence
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