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1. Abstract
The problem of single channel speaker separation, attempts to
extract a speech signal uttered by the speaker of interest from
a signal containing a mixture of auditory signals. Most algo-
rithms that deal with this problem, are based on masking, where
reliable components from the mixed signal spectrogram are in-
versed to obtain the speech signal from speaker of interest. As
of now, most techniques, estimate this mask in a binary fashion,
resulting in a hard mask. We present a technique to estimate
a soft mask that weights the frequency sub-bands of the mixed
signal. The speech signal can then be reconstructed from the es-
timated power spectrum of the speaker of interest. Experimental
results shown in this paper, prove that the results are better than
those obtained by estimating the hard mask.

2. Introduction
In a natural scenario, speech signals are usually perceived
against a background of many sounds. The human ear has the
ability to efficiently separate necessary speech signals from a
plethora of other auditory signals, even if these signals have
similar overall frequency characteristics, and are perfectly co-
incident in time.

However, it has not been possible to achieve similar re-
sults through automatic techniques. The problem of source
separation – separation of one or more desired signals from
mixed recordings of multiple signals – has traditionally been
approached by using multiple microphones, in order to ob-
tain sufficient information about the incoming speech signals
to perform effective separation. Typically, no prior information
about the speech signals is assumed, other than that the multi-
ple signals that have been combined are statistically indepen-
dent, or uncorrelated with each other. The problem is treated
as one of Blind Source Separation (BSS), which can be per-
formed by techniques such as deconvolution [1], decorrelation
[2] and Independent Component Analysis (ICA) [3]. This ap-
proach works best when the number of recording channels (mi-
crophones) are at least as many as the number of signal sources
(speakers).

A more challenging, and potentially far more interesting
problem is that of separating speech signals from a single
channel recording, i.e. when the multiple concurrent speak-
ers/sources have been recorded by only a single microphone.
Since the problem is inherently underspecified, prior knowl-
edge, either of the physical nature, or the signal or statistical
properties of the signals, must be assumed. Computational au-
ditory scene analysis (CASA) based solutions (e.g. [4], [5]), are
based on the premise that human-like performance is achievable
through processing that models the mechanisms of human per-
ception, e.g. via signal representations that are based on models
of the human auditory system [6], the grouping of related phe-

nomena in the signal, and the ability of humans to comprehend
speech even when several components of the signal have been
removed. Jang et. al. [7] present a signal-based approach where
basis functions extracted from training instances of the signals
from the individual sources are used to identify and separate the
component signals in mixtures.

A third approach, and one that is related to the subject mat-
ter of this paper, uses a combination of detailed statistical mod-
els and Weiner filtering to separate the component speech sig-
nals in a mixture. The methods are largely founded on two
assumptions: 1. any time-frequency component of a mixed
recording is dominated by only one of the components of the
independent signals (an assumption that is sometimes termed
as the log-max assumption), 2. perceptually acceptable signals
for any speaker can be reconstructed from only a subset of
the time-frequency components, suppressing others to a floor
value. Roweis [8] models the distributions of short-time Fourier
transform (STFT) representations of the signals from the in-
dividual speakers by HMMs. Mixed signals are modeled by
factorial HMMs, that combine the HMMs for the individual
speakers. Speaker separation proceeds by first identifying the
most likely combination of states to have generated each short-
time spectral vector from the mixed signal. The means of the
states are used to construct spectral masks that identify the time-
frequency components that are estimated as belonging to each
of the speakers. The time-frequency components identified by
the masks are used to reconstruct the separated signals, a proce-
dure Rowies terms re-filtering.

Hershey et. al. [9] extend the above technique by mod-
eling narrow and wide-band spectral representations separately
for the speakers. The overall statistical model for each speaker
is thus a factorial HMM that combines the two spectral repre-
sentations. The mixed speech signal is further augmented by
visual features representing the speakers’ lip and facial move-
ments. Reconstruction is performed by estimating a target spec-
trum for the individual speakers from the factorial HMM appa-
ratus, estimating a Weiner filter that suppresses undesired time-
frequency components in the mixed signal, and reconstructing
the signal from the remaining spectral components.

Reyes-Gomez et. al. [10] decompose the signal into mul-
tiple frequency bands. The overall distribution for any speaker
is a coupled HMM in which each spectral band is separately
modeled, but the permitted trajectories for each spectral band
are governed by all spectral bands. The statistical model for the
mixed signal is a larger factorial HMM derived from the cou-
pled HMMs for the individual speakers. Speaker separation is
performed using the re-filtering technique proposed by Roweis.
Similar techniques have also been proposed by other authors.

All of the above methods feature several simplifying ap-
proximations. Roweis and Reyes et. al. utilize the log-max
assumption to describe the relationship of the log power spec-
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trum of the mixed signal to that of the component signals. In
conjunction with the log-max assumption, it is assumed that the
distribution of the log of the maximum of two log-normal ran-
dom variables is well defined by a normal distribution whose
mean is simply the largest of the means of the component ran-
dom variables. In addition, only the most likely combination
of states from the HMMs for the individual speakers is used to
identify the spectral masks for the speakers. Hershey et. al. do
not use the log-max assumption, preferring instead to more ac-
curately model the power spectrum of the mixed signal as the
sum of the power spectra of the component signals. However, in
order to account for this model, they approximate the distribu-
tion of the sum of log-normal random variables as a log-normal
distribution whose moments are derived as combinations of the
statistical moments of the component random variables. In all
of these techniques speaker separation is achieved by suppress-
ing time-frequency components that are estimated as not rep-
resenting the speaker, and reconstructing signals from only the
remaining time-frequency components.

In this paper we present some algorithms that attempt to
avoid some of the approximations in the above techniques. We
continue to utilize the log-max algorithm, primarily because the
approximation introduces little error, as we explain in Section
3. However, the probability distributions computed for the log
spectral vectors of the mixed signal are exact, within the restric-
tions of the log-max model. In Section 5 we describe a mini-
mum mean-squared error (MMSE) 1 estimation technique that
attempts to reconstruct all spectral components of the separated
signals, as opposed to the conventional technique of only retain-
ing spectral components that are known to belong to the signal
with some certainty. In Section 6 we present a soft-mask tech-
nique that assigns probabilities to the various spectral bands.
Reconstruction is not performed by the simple re-filtering used
by Roweis et. al., but by ensuring that the reconstructed signals
sum back to the original mixed signal. For both techniques, we
derive contributions to the separated signals from every com-
bination of component densities from the individual speakers,
rather than just the most likely combination.

We utilize simple mixture Gaussian densities to model the
distributions of entire spectral vectors. In terms of the statisti-
cal models employed, the closest comparable algorithm is the
MAXVQ algorithm [11], which is essentially the same as the
re-filtering algorithm in [8], with the difference that mixture
Gaussian densities are employed instead of HMMs. However,
the algorithms presented in this paper can be easily extended to
work with more detailed, better models such as HMMs, facto-
rial HMMs, or coupled HMMs, such as those used in [8], [9]
and [10], although we have not attempted to do so in this paper.
The algorithms are presented in the context of separating sig-
nals from two speakers, however, as explained in Section 8 they
can be extended to multiple speakers, with some modifications.

The experimental results presented in Section 7 indicate
that the presented techniques can result in better reconstruction
than that obtained with the MAXVQ algorithm. As explained
in Section 8, this leads us to hypothesize that results obtained
with techniques that use more detailed statistical models can be
improved by using the extensions proposed in this paper.

3. The Mixing Model
Let

�������
and � �����

be the signals generated by two speakers�
	
and

���
, speaking simultaneously into a single microphone.
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The mixed signal 
 �����
recorded by the microphone is the sum

of the two speech signals:
 ����������������� � �������
(1)

Let
�������

represent the power spectrum of
�������

, i.e.����������� ��� ���������!� "$#
(2)

where
�

represents the Fourier transform, and the
� �%� "

opera-
tion computes a component-wise squared magnitude. Similarly,� �����

and 
 �����
denote the power spectra of � �����

and 
 �����
re-

spectively. If we assume that
�������

and � �����
are uncorrelated

with each other, we get:
 �������&�������'� � �������
(3)

The relationship in equation 3 is strictly valid only in the
long term, and is not guaranteed to hold for power spectra mea-
sured from analysis windows of finite length. In general, equa-
tion 3, becomes more valid as the length of the analysis window
increases.

Let ( �����
, ) �����

and * �����
represent the logarithm of

�������
,� �����

and 
 �����
respectively. From equation 3 we get:

* �����+��,.-$/
�1032547698:�;03<$4 6=8>��#
(4)

which can be written as* �����+�@?BA3C
� ( ������# ) ���������D,E-5/=�GF3�H03I+J K34E2547698>L�<$47698�8>M:I+NGOP472547698>L!<P47698�8Q���
(5)

In practice, the instantaneous spectral power in any frequency
band of the mixed signal is typically dominated by one speaker.
The log-max approximation codifies this observation by modi-
fying equation 3 to* �����+R�?BAPC'� ( ������# ) ���������

(6)

In the rest of this paper, we will drop the frequency argument
�

and simply represent the logarithm of the power spectra, which
we will refer to as log spectra, as ( , ) and * respectively.

The requirements for the log-max assumption to hold con-
tradict those for equation 3, whose validity increases with the
length of the analysis window. The analysis window used to
estimate the power spectra of the signals must hence effect a
compromise between the requirements for equations 3 and 6. In
our experiments, we have utilized an analysis window of 25ms.
This window size is quite common, and strikes a good balance
between the window length requirements for both the uncorre-
latedness and the log-max assumptions to hold.

For all the experiments reported in this paper, signals were
sampled at 16Khz, and were divided into frames of 25ms, with
an overlap of 15ms between adjacent frames. A 400 point Han-
ning window was applied to each frame, and a 512 point DFT
computed from it. 257 point log power spectral vectors were
derived from the resulting Fourier spectra.

Figure 1 shows the log spectrum of a 25ms segment of a
mixed signal for two speakers, and the corresponding log spec-
tra for the original unmixed signals for the two speakers. We ob-
serve that in general the value of the log spectrum of the mixed
signal is very close to the larger of the log spectra for the two
speakers, although it is not always exactly equal to the larger
value. In general, the error between the true log spectrum and
that predicted by the log-max approximation is very small.

Comparison of equations 5 and 6 shows that the maximum
error introduced by the log-max approximation is

,.-$/
�>S5�T�U � V5W
. The typical values of log-spectral components in our ex-

periments lay between 7 and 20, and the largest error introduced
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Figure 1: Log Power Spectrum for one frame of speech

by the log-max approximation was less than 10% of the value of
any spectral component. More importantly, the ratio of the av-
erage value of the error to the standard deviation of the distribu-
tion of the log-spectral vectors is less than 0.1, (for the specific
data sets used in our paper), and can be considered negligible.

4. The Statistical Model
We model the distribution of the log spectral vectors for any
speaker by a mixture Gaussian density. Within each Gaussian in
the mixture, the various dimensions (i.e. the frequency bands in
the log spectral vector) are assumed to be independent of each
other. Note that this does not imply that the frequency bands
are independent of each other over the entire distribution of the
speaker.

Let ( and ) denote log power spectral vectors for speakers�
	
and

���
respectively. According to the above model, the

distribution of ( for speaker
� 	

can be represented as

XY� ( ���[Z�\]^ \P_+`
X 2 �1a 2 �cbde _f`

g � ( eihkj 2^ \ L e #fl 2^ \ L e ��# (7)

where, m 2 is the number of Gaussians in the mixture Gaussian,X 2 �1a 2 �
represents the a priori probability of the

a=n�o2 Gaussian,p
represents the dimensionality of the the power spectral vector( , ( e represents the q n�o

dimension of ( , and j 2 ^ \ L e and
l 2^ \ L e ,

represent the mean and variance respectively of the q n o
dimen-

sion of the
a n o2 Gaussian in the mixture.

g � ( e hfj 2^ \ L e #+l 2^ \ L e �
represents the value of a Gaussian density with mean j 2 ^ \ L e and
variance

l 2^ \ L e at ( e .
The distribution of ) for speaker

���
can similarly be ex-

pressed as

XY� ) �+� Z+r]^ r _f`
X < �1a < � bde _f`

g � ) e hkj <^ r L e #klk<^ r L e ��� (8)

The parameters of
XY� ( �

and
XY� ) �

are learnt from training
corpora of speech recorded independently for the two speakers.

Let * represent any log power spectral vector for the mixed
signal. Let * e denote the q n o

dimension of * . The relation-
ship between ( e , ) e and * e follows the log-max approximation
given in equation 6. We introduce the following notation for
simplicitys 2 ���D� a 2 �t� u 6M
v g � ( e hwj 2 ^ \ L e #�lk2^ \ L e � qx( e (9)X 2 ���D� a 2 �t� g ��� h�j 2^ \ L e #�lk2^ \ L e � (10)s < ���H� a < �t� u 6M
v g � ( e hwj 2 ^ r L e #�l�2^ r L e � qx( e (11)X < ���H� a < �t� g ��� h�j 2^ r L e #�lk2^ r L e � (12)

where,
a 2 and

a < represent indices in the mixture Gaussian dis-
tributions for ( and ) , and

�
is a scalar random variable.

It can now easily be shown thatXY� * e � a 2 #�a < ���&X 2 � * e � a 2 � s < � * e � a < �:�yX < � * e � a < � s 2 � * e � a 2 ���
(13)

i.e. under the log-max assumption, either * � ( and ){z|* ,
or * � ) and (}z~* . Since the dimensions of ( and ) are
independent of each other, given the indices of their respective
Gaussians, it follows that the the components of * are also in-
dependent of each other. Hence

XY� * � a 2 #�a < ��� bde _+`
XY� * e � a 2 #�a < ��#

(14)

and XY� * �+� ]^ \ L ^ r
XY�1a 2 #�a < �GXY� * � a 2 #�a < �

� ]^ \ L ^ r
X 2 �1a 2 �GX < �1a < � d e XY� * e � a 2 #�a < ��� (15)

Note that the conditional probability of the Gaussian in-
dices is given by

XY�1a 2 #�a < � * ��� X 2 �1a 2 �GX < �1a < �GXY� * � a 2 #�a < �XY� * � �
(16)

5. Minimum Mean Squared Error
Estimation

The minimum-mean-squared error estimate �( for a random
variable ( is defined as the value that has the lowest expected
squared norm error, given all the conditioning factors � . i.e.

�( �&AP��/$?��.�=�+���%����� ( � " � �:� (17)

It is easy to show that this estimate is given by the mean of the
distribution of ( , i.e. �( �@��� ( � �:� .

For the problem of speaker separation, the random variables
to be estimated are the log spectra of the individual speakers.
Let * be the log spectrum of the mixed signal in any frame of
speech. Let ( and ) be the log spectra of the desired unmixed
signals for the frame. The MMSE estimate for ( is given by

�( �&��� ( � *$�� u vM'v ( XY� ( � * � qx( � (18)

Alternately, the MMSE estimate �( can be stated as a vector,
whose individual components are obtained as:

�( e � u vM'v ( e XY� ( e � * � qx( e (19)

XY� ( e � * �
can be expanded asXY� ( e � * ��� ]^ \ L ^ r

XY�1a 2 #ka < � * �GXY� ( e � a 2 #+a < # * e ��� (20)

In this equation,
XY� ( e � a 2 #�a < # * e � is dependent only on * e , theq n o

dimension of * , since individual Gaussians in the mixture
Gaussians are assumed to have diagonal covariance matrices.
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Figure 2: Waveforms for: (a) Original signal of Speaker 1; (b)
Original signal of Speaker 2; (c) Digitally mixed signal; (d)
Soft-Mask reconstruction of signal of Speaker 1; (e) Soft-Mask
reconstruction of signal of Speaker 2; (f) MMSE reconstruction
of signal of Speaker 1; (g) MMSE reconstruction of signal of
Speaker 2; (h) MAXVQ reconstruction of signal of Speaker 1;
(i) MAXVQ reconstruction of signal of Speaker 2

It can be shown that

XY� ( e � a 2 #�a < # * e ���������
����

� \ 4E23�5� ^ \ 8 � r 47���$� ^ r 8� 47���5� ^ \ L ^ r 8� � \ 4E� � � ^ \ 8�� r 4E� � � ^ r 8.�!4E2 � M
� � 8� 4E� � � ^ \ L ^ r 8�7� ( e�� * eU -$���9����� �E¡��
(21)

where, ¢ � ( e � * e �
is a Dirac delta function of ( e centered at * e .

Equation 21 has two components, one accounting for the case
where ( e is less than * e , while ) e is exactly equal to * e , and the
other for the case where ) e is less than * e while ( e is equal to
it. ( e can never be less than * e .

Combining equations 19, 20 and 21 we get the following
equation for the MMSE estimate of ( e :

�( e � ]^ \ L ^ r
XY�1a 2 #fa < � * �XY� * e � a 2 #�a < �£ X < � * e � a < ��� j 2 ^ \ L e s 2 � * e � a 2 �+�ylk2^ \ L e X 2 � * e � a 2 � �

� s < � * e � a < �GX 2 � * e � a 2 � * e9¤ �
(22)

The MMSE estimate for the entire vector, �( , is obtained by es-
timating each component separately using equation 22. Note
that equation 22 is exact for the mixing model and the statistical
distributions assumed.
Reconstructing separated speech signals: The DFT of each
frame of speech from speaker

��	
is computed as����������@0 (i¥ � �( �T¦Q§ 
 ��������#

(23)

where,
§ 
 �����

represents the phase of 
 �����
, the Fourier spec-

trum from which the log spectrum * was obtained. The esti-
mated signal for

�'	
in the frame is obtained as the inverse

Fourier transform of ��¨�����
. The estimated signals from all

the frames are stitched into a continuous utterance using the
overlap-add method.
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6. Soft Mask Estimation
As per the log-max assumption of equation 6, * e , the qx© ª com-
ponent of any log spectral vector * computed from the mixed
signal is equal to the larger of ( e and ) e , the corresponding
components of the log spectral vectors for the underlying sig-
nals from the two speakers

� 	
and

� �
. Thus, any observed

spectral component belongs completely to one of the speakers.
The probability that the observed log spectral component * e be-
longs to speaker

�'	
, and not to

���
, conditioned on the fact that

the entire observed vector is * , is given byXY� ( e � * e � * ���&XY� ( e�« ) e � * ���
(24)

In other words, the probability that * e belongs to
�'	

is simply
the conditional probability that ( e is greater than ) e .

XY� ( e «) e � * e �
can be expanded asXY� ( e¬« ) e � * ��� ]^ \ L ^ r

XY�1a 2 #fa < � * �GXY� ( e­« ) e � * e #+a 2 #fa < ���
(25)

Note that ( e is dependent only on * e and not all of * , oncea 2 and
a < are given. Using Bayes rule, and the definition in

equation 9 we obtain:

XY� ( e�« ) e � * e #fa 2 #+a < ��� XY� ( e � * e # ) e z�* e � a 2 #�a < �XY� * e � a 2 #�a < �
� X 2 � * e �®a 2 � s < � * e �®a < �XY� * e �®a 2 #+a < � �

(26)
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Figure 3: Spectrograms of por-
tions of the signals shown in
Figure 1. (a) Speaker 1: Orig-
inal signal, (b) Speaker 2: Orig-
inal signal, (c) Mixed signal (d)
Speaker 1: MMSE reconstruc-
tion, e) Speaker 1: MAXVQ
reconstruction, f) Speaker 2:
MAXVQ reconstruction

c.

Combining equations 24, 25 and 26, we getXY� ( e � * e � * ��� ]^ \ L ^ r
XY�1a 2 #�a < � * � X 2 � * e �®a 2 � s < � * e �®a < �XY� * e �®a 2 #fa < � �

(27)
Reconstructing separated signals: The

XY� ( e � * e � * �
val-

ues are treated as a soft mask that identify the contribution of
speaker

�'	
to the log spectrum of the mixed signal, * .

Let ¯ 2 be the soft mask for
� 	

, for the log spectral vector* . Note that the corresponding mask for
� �

is
F­� ¯ 2 . The

estimated masked Fourier spectrum ��¨�����
for

�'	
can be com-

puted in one of two ways. In the first method, ��������
is obtained

by component-wise multiplication of ¯ 2 and 
 �����
, the Fourier

spectrum for the mixed signal from which * was obtained.
In the second method, we apply the soft mask to the log

spectrum of the mixed signal. The q © ª component of the esti-
mated log spectrum for

�'	
is given by

�( e � ¯ 25L e � * e � s � * e # ¯ 25L e ��# (28)
where, ¯ 25L e is the q © ª component of ¯ 2 and

s � * e # ¯ 25L e � is a
normalization term that ensures that the estimated power spectra
for the two speakers sum to the power spectrum for the mixed
signal, and is given bys � * e # ¯ 25L e ���&°�±3²'�10P� ��³ \3´ � �T03� � 4 ` M ³ \3´ � 8w��� (29)

The entire estimated log spectrum �( is obtained by recon-
structing each component using equation 28. The separated sig-
nals are obtained from the estimated log spectra in the manner
described in Section 5.

7. Experiments and Results
Experiments were conducted to evaluate the MMSE and soft
mask estimation algorithms. Approximately one hour of speech
data were recorded from two speakers, one male and one fe-
male, for training mixture Gaussian distributions. Mixture
Gaussian densities with 256 Gaussians were estimated for the
log spectra of each of the speakers, using the Expectation Max-
imization algorithm.

In addition to the training data, 10 minutes of speech were
recorded by each of the two speakers individually, as test data.
These signals were digitally added with an SNR of of 0dB to
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f. g.
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h. i.

simulate mixed recordings. Figure 2 shows an example of the
signals obtained using the speaker separation algorithms pre-
sented in this paper. Figure 1(a) and 1(b) show original speech
signals of Speaker 1 and Speaker 2 respectively. Figure 2(c)
shows the digitally mixed signal. Waveforms of signals recon-
structed using the soft mask estimation algorithm, MMSE es-
timator and the MAXVQ algorithm are also shown. MAXVQ
uses mixture Gaussian densities as statistical models for the dis-
tributions of the log spectral vectors for the speakers, and is thus
an appropriate comparator for the algorithms presented in this
paper. Spectrograms of segments of the speech signals shown
in figure 2 are also shown in figure 3.

In a second test, the two speakers were recorded speaking
simultaneously into a single microphone, to obtain real mixed
recordings. Figure 4 shows the results obtained on one such
signal. The mixed signal is shown in figure 4(a). Also shown
are individual speaker signals reconstructed using soft mask es-
timation (in figures 4(b) and 4(c)), MMSE estimator (in figures
4(d) and 4(e)), and MAXVQ approach (in figures 4(f) and 4(g)).
In all cases, soft-mask based reconstruction was performed by
applying soft masks to the log spectra.

8. Observation and Conclusions
In the examples shown in section 7 and other tests, the tech-
niques proposed in this paper consistently result in cleaner
speaker separation than MAXVQ. The competing speaker is
significantly more suppressed than with MAXVQ. The MMSE
reconstruction results in an improvement of 3-5dB in SNR for
the speakers. Reconstruction with the soft masks shows a pecu-
liar artifact: in most regions of the signals an SNR gain of 5-8dB
over MAXVQ is obtained. However, in some short segments of
the signal, typically about 50-200ms wide, the separated spec-
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Figure 4: Waveforms for: (a) Mixed Signal; (b) Soft-Mask re-
construction of signal of signal of Speaker 1 ; (c) Soft-Mask
reconstruction of signal of Speaker 2; (d) MMSE reconstruc-
tion of signal of Speaker 1; (e) MMSE reconstruction of signal
of Speaker 2; (f) MAXVQ reconstruction of signal of Speaker
1; (g) MAXVQ reconstruction of signal of Speaker 2;

trum for the speaker is almost completely suppressed to a floor
value. Consequently, the reconstructed signal sounds choppy.

Of the two techniques presented, only the MMSE recon-
struction algorithm optimizes an objective function that is re-
lated to the SNR of the reconstructed signal, and can hence be
expected to actually improve the SNR of the reconstructed sig-
nal. Any sub-optimality in the results must be attributed to in-
adequacies in the basic models used (i.e. the log-max mixing
model and the mixture Gaussian statistical distributions). Addi-
tionally it must be noted that the SNR may be improved if the
phase of the speaker of interest was known. However, this is not
feasible as the recording is done on a single channel.

On the other hand, the soft mask methods are essentially
heuristic in nature (as are all other masking based techniques)
and are not guaranteed to result in improved SNR. Addition-
ally, the technique incorrectly assigns identical phase spectra to
all component signals. The fact that the latter in fact result in
superior reconstruction for the most part is hence surprising.

The estimation of reconstructed spectra and the soft masks
in the MMSE and the soft mask algorithms, respectively, are
exact within the constraints of the mixing and statistical models
used. Thus, the results obtained cannot be improved upon with-
out improving the underlying models themselves. Both tech-
niques are computationally intensive in their exact form, since
they must explicitly compute the contribution of every combi-
nation of Gaussians for the two speakers. However, the required
computation can be reduced greatly by employing the varia-
tional approximation of Ghahramani et. al. [12] or the simpler
factorial approximation of Hershey et. al. [9]. These have not
been implemented for this paper.

The algorithms, in their current form, employ only simple
Gaussian mixture models. They can however be easily extended
to employ more detailed models and processing, such as HMMs
and sub-band decomposition of the signals, to obtain signifi-
cantly improved separation. Also, the algorithms in this paper
(and indeed most current single-channel speaker separation al-
gorithms) assume instantaneous mixing of the signals, and ig-
nore the effect of room response on the signals. The algorithmic
formulations used in this paper enable easy incorporation of the
estimation and cancellation of short-time room response. This
will be the topic of future work.
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