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Abstract

We present a novel method for discovering auditory objects
from scenes in a self-organized manner. Our approach is us-
ing non-negativity constraints to find the building elements of
a monaural auditory input. Surprisingly, although devoid of
any statistical measures, this approach discovers independent
elements in the scene similarly to previously reported meth-
ods employing ICA algorithms. The use of non-negativity
constraints makes this work best suited for spectral magni-
tude analysis and provides a fairly robust method for discov-
ery and extraction of auditory objects from scenes.

1. Introduction

Processing of magnitude spectra for the extraction of au-
ditory objects has been a long standing practice. It is by
now common knowledge that by visual inspection of time-
frequency magnitude transforms it is possible to see individ-
ual objects and obtain an understanding of the structure of
an auditory scene. Alas this visual inspection, although very
successful using the researcher’s eye, is rather challenging
for a machine to perform automatically. This has resulted in
the creation of a rich variety of algorithms that attempt to an-
alyze audio using the structure in the time-frequency domain.

In this paper we will present a approach that gives accu-
rate results through a surprisingly simple optimization pro-
cess. This method is akin to the ICA approaches described
in the past by Casey and Westner [2] and Smaragdis [8], it
however lacks a statistical foundation and rather attempts to
describe auditory scenes using a component-wise reconstruc-
tion approach. In this paper we will present two flavors of
this technique, one dealing with static-spectrum objects, and
an extension that can deal with time-varying objects.

2. Detection of objects using Non-Negative
Matrix Factorization

In this section we will consider the discovery and extraction
of static-spectrum objects from a scene. We use the term
static-spectrum to imply an approximately constant, in time,
spectral structure. This would be exemplified by the spectral
characteristics of a constant frequency tone, or a piano note,
or an impact sound. All of these examples might change
slightly in time however a single spectrum can describe their

structure concisely. To perform the object discovery we will
employ the Non-Negative Matrix Factorization algorithm by
Lee and Seung [5].

2.1. Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF), was introduced
by Lee in Seung in a paper that described its application to
face recognition and analysis [4]. Although its statistical un-
derpinnings and reasoning behind its success is still an in-
tense subject of research and speculation, it has been widely
adopted as a very useful technique for linear decomposition
and dimensionality reduction of non-negative data sets.

Its formulation is as follows. Given a non-negative M X
N matrix V € RZOMXN the goal is to approximate it as a
product of two non-negative matrices W € RZ%M*R and
H e R29EXN where R < M, such that we minimize the
error of reconstruction of V by W - H. Lee and Seung [5]
provided two cost functions by which we can measure the
error or reconstruction. One is the norm of the difference
between the input and the reconstruction, and the other is a
mutated version of the Kullback-Leibler distance as applied
to arbitrary functions. We will use the latter cost which is
defined as:
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where ||-|| 7 is the Frobenius norm and ® is the Hadamard
product (an element-wise multiplication); the division is also
element-wise. In order to optimize this cost function Lee
and Seung [5] also provided a update algorithm which due to
its multiplicative nature forgoes the need for non-negativity
constraints during optimization (assuming the initial values
of W and H are positive). The updates for the matrices W
and H are defined as:
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where 1 is a M x N matrix with all its elements set to
unity, and the divisions are performed in an element-wise
manner. These updates are applied iteratively until the two
factors start converging to a constant solution. The variable
R, which is the number of columns of W and the rows of
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Figure 1: Spectrogram of a scene composed of bandlimited
noise bursts.
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Figure 2: The factors obtained by performing NMF on the
spectrogram in figure 1.

H, determines the rank of the approximation. If R = M we
can obtain a complete reconstruction of the input, but as R is
reduced we start obtaining low-rank approximations and no-
tice that the elements of W and H start to reveal the structure
of the input. The R columns of W tend to reveal the verti-
cal structure of the input, and their corresponding R rows in
H the horizontal structure. These pairs of columns and rows
result into IR linear models that will be describing the iden-
tified objects or components in the input (a more complete
and intuitive description of these models and their ability to
model objects follows in the next section).

Selecting I? can be a complex procedure that requires es-
timating the dimensionality of the input matrix. Although
various techniques for this estimation are available in the
statistics literature, in this paper we will use prior knowl-
edge of the structure of the input. If R is misestimated and is
greater than the objects in the input scene, then some of these
objects will be distributed between two or more NMF com-
ponents. Interestingly enough this split is often intuitive, dis-
tributing sounds using distinct parts (e.g. a harmonic and an
inharmonic component, or an impulse and a release part). If
R is less than the optimal value, then objects are consolidated
into NMF components and the results are not as significant.

2.2. Non-Negative Matrix Factorization applied on audio
spectra

To illustrate the use of this approach in the audio domain
consider the simple case of two distinct band-limited noise
bursts in an auditory scene shown in figure 1.

In terms of the time-frequency composition of the scene
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Figure 3: The spectrogram of a drum loop. Four types of
instruments can be visually identified.
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Figure 4: NMF analysis of the spectrogram in figure 3. All
four instruments are adequately described in both time and
[frequency by the columns of W and rows of H.

we can say that the two components are a noise burst centered
around frequency bin 50 which occurs four times, and a noise
burst around frequency bin 23 which occurs three times. Us-
ing this magnitude spectrogram as the non-negative matrix
input to NMF with R = 2 we obtain the results in figure 2.

In order to interpret the results let us examine the de-
composition that NMF performs. The provided input spec-
trogram is a M x N matrix V representing the magnitude
value for the M frequency bins at the NV time frames. This
is decomposed as a product of two matrices V.~ W - H.
The matrix W is M x R and H is R x N. Now consider
the following interpretation of a matrix product, individually
each of the columns of W is multipled with its correspond-
ing row in H to produce a rank-1 approximation of V. These
approximations are then summed up to produce the final ap-
proximation of V. Keeping this in mind we can see how the
matrix W will encapsulate some of the vertical structure of
V in its columns, whereas the matrix H will encapsulate the
horizontal structure. Upon examination of the results in fig-
ure 2, we can see how this works with the noise burst exam-
ple. The two columns of W describe the frequency structure
of the two noise bursts (one centered around bin 50 and one
around bin 23). Their corresponding rows in H describe the
time evolution of each burst, one occurring four times and
the other occurring thrice. Effectively this decomposition
has revealed the structure of the input scene by describing
its dominant elements in both frequency and time.

Now let us examine a more complex example where this
type of analysis is applicable. Consider the spectrogram in



figure 3. This is a spectrogram from a drum loop consisting
of four sounds; a bass drum (low frequency with four long
instances), a snare drum (wideband with two instances), a
cowbell (resonant harmonic structure, two instances), and a
hi-hat (high-frequency wideband with eight instances). Al-
though not entirely static, the spectra of these sounds are
fairly constant in time, which means that we can apply the
method developed so far. The results of this analysis with
R = 4 are shown in figure 4. Note how the columns of W
and rows of H describe the four instruments. The first col-
umn of W is a high-frequency wideband spectrum and the
corresponding time envelope as described in the first row of
H has eight peaks. These two describe the hi-hat instrument
spectrally and temporally. Likewise, the second object has a
resonant spectral structure and two time peaks (the cowbell),
the third is wideband and has two instances in time (the snare
drum) and the fourth is the bass drum, exhibiting a low fre-
quency spectrum and four instances in time. Despite the fact
that the four instruments were often overlapping in time and
in frequency, NMF was successful in describing the scene in
a semantically meaningful way.

This approach can be used with a variety of scenes, to ex-
tract information about its time and frequency composition.
A notable case where it performs admirably under very com-
plex conditions, is musical transcription of piano music as
described by Smaragdis and Brown [9].

3. Detection of objects using Non-Negative
Matrix Deconvolution

In this section we will introduce a new extension to NMF
which will now allow us to deal with objects that have time-
varying spectra. Unlike the previous approach where the au-
ditory objects were described by a spectrum and its corre-
sponding energy in time, this time we will consider a se-
quence of successive spectra and its corresponding energy
across time. This will require a straightforward extension to
the NMF update equations.

3.1. Non-Negative Matrix Deconvolution

NMF attempts to reconstruct a matrix V using a matrix prod-
uctby V &= W - H. In Non-Negative Matrix Deconvolution
(NMD) we extend this expression to:
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where V. € RZMXN g the input we wish to decom-
pose, and W; € RZOMXE and H € RZ%EXN are the two

p—
factors. The (-) operator is a shift operator that moves the
columns of its argument by ¢ spots to the right, such that:
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The leftmost columns of the resulting matrix are set to

zero so as to maintain the original size of the input. Likewise
—1

we define the inverse operation (-), which shifts columns to
the left (again appropriately zero-padding on the right).

In order to estimate the appropriate matrices W; and H
to estimate V we can use the already existing framework of
NMEF. We define our cost function as:
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Our new cost function can be seen as a set of NMF op-
erations that are being summed to produce the final result.
Keeping this observation in mind we can use the adaptation
procedure for NMF, only this time instead of updating two
matrices (W and H), we will be updating 7"+ 1 matrices, all
the W, and H. This results into the NMD update equations
which are:
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In every updating iteration, for each ¢ we update H and
all W,. Through experience it has been found very practical
to first update all W, and then update H using the average
result of its updates from all W. Since H is dependent on
all W, serially updating it will result into an H heavily in-
fluenced by the last update using Wr_1, and not equally by
all W,. In terms of performance this technique largely de-
pends on T'. If T' = 1 then it reduces to the NMF updates,
otherwise it is burdened with extra updates.

3.2. Non-Negative Matrix Deconvolution applied on au-
dio spectra

In this section we will consider the application of NMD on
audio spectra and highlight its differences as compared to
NME. What NMD does is impose a temporal structure to the
frequency description of each object. In NMF the spectra
were constrained to be static and certain characteristics of
their spectral evolution structure was lost. With the NMD
representation the ith column of the W, matrix describes
the spectrum of the ith object ¢ time steps after that object
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Figure 5: Spectrogram of a scene composed of two repeating
objects with distinct evolution in their spectral structure.

it has begun. This provides an extra degree of freedom to de-
scribe how objects evolve spectrally once they have started.
To demonstrate how this works as compared to NMF con-
sider the synthetic spectrogram in figure 5. The sounds con-
tained therein are two repeating sinusoidal patterns that are
frequency modulated in a consistent manner.

In figure 6 we see the two object descriptions that NMF
recovers. We can see that even though the region of fre-
quency that each pattern dominates is encapsulated in the
columns of W, the results are not what we would hope for.
The expressive power of this description is not enough to re-
veal the structure we are after.

Now let us consider the same input decomposed using
NMD. This time in addition to defining how many compo-
nent we want to discover we have to define the length T' of
spectral evolution that we are interested in. As with the value
of R sophisticated statistical measures can be applied to find
an optimal value for 7', however this is beyond the scope of
this paper and instead we’ll select values heuristically. For
this particular example we set 7' = 18, which is approxi-
mately the length of the two patterns. The results of the anal-
ysis are shown in figure 7. Note how this time the spectral
evolution within each pattern is encapsulated in the columns
of all W,. Likewise H now contains in its rows the temporal
position of each pattern.

Now let us consider a more complex example with real
sounds. We made two recordings of the same speaker con-
tinuously uttering the word ”where” in one recording and the
word “what” in the other. the pitch for the word “where”
was going upwards, and for “where” downwards. The two
recordings were mixed into a monophonic file and for most
of the time the two words where overlapping. The spectro-
gram of the mixture is shown in figure 8. We applied NMD
to this mixture with R = 2 and T'" = 50. The results are
shown in figure 9. The columns of the resulting W have
adapted to the spectrograms of the individual words “where”
and “what”, whereas the rows of H contain peaks where the
corresponding words occur.

4. Extraction and reconstruction of objects

An additional advantage of these types of decompositions is
the fact that we can reconstruct the input spectrogram using
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Figure 6: NMF analysis of the data in figure 5. Note how the
spectral evolution character of the two objects is lost.

1st columns of W, to W, 2nd columns of W, to W, Rows of H

\an IS
oy

5 10 15 5 10 15 50 100 150
Time Time Time

Frequency
Frequency
Component #

Figure 7: NMD analysis of the data in figure 5. Note how
the spectral evolution character of the two objects is now
captured by the structure of the W matrices.

an arbitrary number of objects. Since the objects in the scene
are often segregated in the columns of W (or W) and the
rows of H, we can use only these to make a selective approx-
imation. So in the case of NMF, if we wish to extract the nth
object we do so by:

vV, = W& g0 @)

Where W) is the nth column of W and H(™?) is the
nth row of H. Likewise for NMD we have:
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What V,, will be is the contribution of the nth object to
the magnitude spectrogram, effectively recovering the time-
frequency distribution of that object. This technique can be
used for both extracting and suppressing individual compo-
nents. We can only reconstruct one V,, to get the spectro-
gram of a single object, or reconstruct using a set of V,,
in which case we get the contribution of selected objects.
Finally we can always reconstruct and omit only one V,,,
which can be the component that models an unwanted noise
source that we want to remove.

To illustrate the form of all the V,, consider the plots in
figure 10, that reconstruct the spectrogram in figure 8, using
one object at a time. The two plots display V; and Vo, which
when summed will approximate the input spectrogram.
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Figure 8: Spectrogram of the overlapped repeating words
“what” and “where”. “Where” is discernible by the up-
wards moving formants, and "what” by the downward trend.
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Figure 9: NMD analysis of the data in figure 8. The two
words have been discovered as the objects described in the
columns of the W matrices. There respective location in
time is denoted by spikes in the rows of H.

Since what we obtain with this process is a magnitude
spectrogram if we wish to convert it back to the time domain
we would need to deal with the missing phase information.
Although multiple phase recovery techniques exist it is suf-
ficient to just use the original phase of the input spectrogram
and modulate it with the magnitude of each V,,. Doing so
results in fairly clean sounding extractions of each object,
provided that the input data can be adequately modeled by
these decompositions.

Finally it is also possible to modify the rows of H to alter
the temporal composition of the scene (for example permut-
ing the rows of H in the drum example would result into
a re-orchestration” of the drum loop), of tamper with the
columns of W (or W,) to change the spectral character of
the inputs.

5. Discussion

One of the interesting points that this paper brings up is the
issue of what is an object. Given the lack of prior object
knowledge in the adaptation method, the results we obtain
are completely dependent on the input scene. The fact that
this method gives us reasonable results has to do with how
well the objects are exposed in the input scene. Considering
the spoken words example, if both the spoken words were
always perfectly synchronized and overlapping then the en-
tire recording would constitute one object since the contained
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Figure 10: Reconstruction of the spectrogram in figure 8 us-
ing only one component at a time.

elements always appear together in a deterministic manner.
The fact that the spoken words are not dependent in their
temporal placing makes them stand out as individual objects.
This means that the data provided to this algorithm needs to
expose the individuality of each object by presenting it in a
disassociated way with other objects.

The object description that we use raises the issue of
how appropriate such a model is for general sounds. Al-
though is seems inflexible to define objects as repeating spec-
tra or spectral patterns, there is significant room to model real
world sounds very well. This is certainly the case with musi-
cal signals where repeating patterns (either at the note scale,
or the phrase scale) can be modeled very accurately. This
has been extensively demonstrated by Casey [2], Smaragdis
and Brown [9][1], Virtanen [10], and others. More complex
signals such as speech recordings can also be analyzed this
way although in this case we often see the extraction of in-
dividual phonemes as opposed to words or the voice of one
speaker (Smaragdis [8]). Adding the temporal component in
this model generalizes the nature of objects that are being
sought and provides one more dimension of description. An
obvious future work extension is to refine this model to deal
with objects that scale in time length so that it can model
temporal evolution in relative terms like Markov model or
dynamic time warping.

Temporal and spectral overlaps are not an issue since the
linear form of the model can deal with summed objects, we
only need to make sure that objects do not repeat verbatim
and are not summed the same way all the time. Once the ap-
proximation process is faced with the task of coming up with
a concise description of the input it is forced to model each
object because this is usually the most compact description
that can perform a satisfactory approximation. Although this
objective could be satisfied with an algorithm that explicitly
attempts to find this description using a statistical foundation
(such as PCA and ICA do), we have found NMF and NMD to
be performing considerably better, despite the lack of statis-
tical rigor and their simplistic cost function. One reason for
this effect is that unlike other approaches there is a strict non-
negativity constraint which fits naturally to finding compo-
nents of magnitude spectra. Algorithms such as ICA which
generally do not impose such constraints often extract mag-



nitude spectra that have both negative and positive elements
(albeit one of the two in smaller quantities). The result of this
effect is unwanted crosstalk between components. By impos-
ing a non-negativity constraint the assumed model becomes
more relevant to the data and thereby provides more suitable
results for this particular problem. The has been solid work
on enforcing non-negativity for ICA algorithms (Plumbley
[6][7]) although the necessity of this constraint has been con-
tested (Cichocki [3]). In general unconstrained ICA will pro-
duce similar results with non-negative ICA when confronted
with non-negative data, however when it comes to sensitive
domains such as audio, these slight differences make an au-
dible difference. The complexity and domain constraints of
non-negative ICA do not yet accommodate applications such
as the ones presented in this paper, it is however a closely
related area to NMF and can soon evolve to be a very useful
audio analysis tool in this context.

Finally although this definition of an object certainly en-
compasses what we would perceive as an individual sound,
it should not be thought so much as something that extracts
what we perceive as an entire sound, but rather something
that extracts building elements of auditory scenes. With anal-
ysis at a shorter time scale we can use this representation to
find sets of temporal basis functions (analysis of speech re-
sults in bases being phonemes with various pitch inflections),
whereas longer term and more coarse analysis can provide us
with information over larger scale behavior (extraction of en-
tire words and causal behaviors between sounds). The lack
of semantics in this approach allows us to work at multiple
levels and discover auditory objects at various resolutions.

6. Conclusions

In this paper we have shown how we can use simple non-
negativity constraints to force low-rank approximations of
magnitude spectra of audio scenes to reveal the existing
structure. By attempting to model an input using only a
handful of spectral and temporal information the models are
forced to retain only the essential information and segment it
in terms of the objects contained in the input. We have shown
how we can use a simple NMF model to decompose scenes
into static spectra and respective time profiles, and also ex-
tended the NMF model to a convolutive form that has more
expressive power and is able to deal with more complex ob-
jects with a varying spectral character. Although these mod-
els are simple they perform admirably well on complex cases
as we demonstrated with real world examples. The non-
negativity constraint seems to be a natural fit for analyzing
magnitude spectra and we anticipate it to be used extensively
for more complex objects models in the future, not only be-
cause of its good performance, but also because of the sim-
plicity of the mathematics involved.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

7. References

Brown, J.C. and P. Smaragdis. “Independent Compo-
nent Analysis for Automatic Note Extraction from Mu-
sical Trills”, In Journal of the Acoustical Society of
America, Vol. 115, Issue 5, pp. 1851-2634, May 2004

Casey, M.A. and A. Westner. “Separation of Mixed
Audio Sources by Independent Subspace Analysis”, in
Proceedings of the International Computer Music Con-
ference, Berlin, Germany, August, 2000.

Cichocki, A. and P.G. Georgiev. "Blind source sepa-
ration algorithms with matrix constraints,” In IEICE
Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol.E§6-A, no.1,

pp-522-531, Jan. 2003.

Lee, D.D. and H.S. Seung. “Learning the parts of ob-
jects with nonnegative matrix factorization”. In Nature,
401:788 791, 1999.

Lee, D.D. and H.S. Seung. ”Algorithms for Non-
Negative Matrix Factorization”. In Neural Information
Processing Systems 2000, pp. 556-562, 2000.

Plumbley, M. D. ”Algorithms for non-negative inde-
pendent component analysis”. In IEEE Transactions on
Neural Networks, 14(3), pp534- 543, May 2003.

Plumbley, M. D. ”Conditions for non-negative indepen-
dent component analysis”. In IEEE Signal Processing
Letters, 9(6), pp177-180, June 2002.

Smaragdis, P. "Redundancy Reduction for Computa-
tional Audition, a Unifying Approach”, Doctoral Dis-
sertation, MAS Dept. Massachusetts Institute of Tech-
nology, Cambridge MA, USA, 2001.

Smaragdis, P. and J.C. Brown. ”"Non-Negative Matrix
Factorization for Polyphonic Music Transcription”, in
IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics. New Paltz, NY, October 2003.

Virtanen, T. ”Separation of Sound Sources by Convo-
lutive Sparse Coding” In ISCA Tutorial and Research
Workshop on Statistical and Perceptual Audio Process-
ing, October 2004.



