Sound Source L ocalization and Separ ation Based on the EM Algorithm
Futoshi Asano and Hideki Asoh

Information Technology Res. Inst., AIST
Tsukuba, Japan
f.asano/ h. asoh@i st.go.jp

Abstract 2.1. Mode of Signal

In this paper, a signal is treated in the frequency domaie. Th
A method of sound localization using the EM algorithm has short-time Fourier transform (STFT) of the microphone inpu
been proposed by Feder and Weinstein [1] and Miller and is denoted ay/(w,t) = [Yi(w,t)],---, Ya(w, )] (input
Fuhrmann [2]. In this paper, the signal separation aspect of vector), wheré&’, (w, t) denotes the STFT of theth micro-
this algorithm is analyzed and is extended so that it can be phone input at time and frequencw. Hereafter, the index
applied to separation of signals from moving sound sources. of frequencyw is omitted for the sake of simplicity. The in-

put vector forL directional signals plus background noise is

1. Introduction modeled as

. . . . . t) = As(t) + n(t 1
For using a speech interface in an everyday situation, aepar y(t) ®) ®) @
tion of the target speech from environmental noise and other

competing speech is indispensable. Various approaches in- Here, the matrb. consists of the location vector s =

cluding multi-microphone-based one such as adaptive beam- ]£a1 ’f' a ’t.aL]' f%ﬁcrgj_loc?tlort]hvfectoetlwg) nsists Otf zihtrans-
forming and blind separation have been proposed (e.qg., [3]) er function ot the wec_pa rom sciqrce o the mi-
crophone asy = [Aq e 9™, - App eIt where

When sound sources do not move, these approaches perform
well. When the sound sources move, however, the separation
performance is usually degraded since the speed of adapta-

Ay, and T, ; denote the gain and the time delay between
thelth source and thexth microphone. The vectsi(t) con-

I S DY T

tion is insufficient for dynamical change of source location Sists of.the source spectrum as— [91(0), ’SL@] '
o The noise vectom(¢) consists of background noise as
[1] and [2] proposed a method of sound localizatioat( n = [Ni(t),---,Ny(t)]7. The noise is assumed to be

separation) based on the EM (Expectation-maximization) al-  g-mean Gaussian noise. The symBdl denotes the num-
gorithm. In this method, a model of the covariance is intro-  per of microphones. It is assumed thfs(t)s” (t)] =

duced in the process of estimating the source location and K — diag(yy,---,~,) and E[n(t)nf (t)] = oI, where
the precision of this model is improved using expectation- (., ... -} denotes the power of signalt) while o de-
maximization iteration. Due to this model-based approach, notes the power of noise(t).

a higher performance of localization was achieved with a
smaller amount of observation compared to other conven-
tional localization method such as MUSIC [4]. This method

is further developed by [5] for tracking of multiple moving | the EM-based approach, the input vector is decomposed
targets by combining with Kalman-filter smoother. into that corresponding to each sound souxgé,), as

An interesting feature of this method is that a signal sepa-
ration mechanism is embedded in the sound localization pro- L
cess. In the present paper, this separation mechanism is fo- y(t) = le (t) = Hx(t), (2)
cused on and is analyzed. Based on this analysis, the EM- 1=1
based approach is then extended to the separation of sound

2.2. EM Algorithm

from multiple moving sources. wherex; (t) = a;S)(t) +ny(t), x(t) = [xF(t),--- ,xL ()T,
andH = [I,--- I]. The matrixI denotes the identity
2. Sound localization using the EM algorithm matrix. The symboln,(t)is an arbit£ary decomposition of
the noise vecton(t) and satisfies ;,” , n;(t) = n(t) and
In this section, the method of sound localization basedenth  E[n;(t)nf’(t)] = 1. A set of decomposed input vec-
EM algorithm is briefly reviewed to facilitate understanglin ~ tors, X = [x(1),--- ,x(N)], is termedcomplete data in the
of the following section. EM Algorithm. Using this decomposition, the log-likelihdo
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function becomes

L N
(0, K;X) =) |-Nlogdet Ko — Y x/T (K 'xu(t)| ,
=1 n=1
3)
where
ag
K = vaal + ZI 4)

The covariance of the observatig(t) is written using (4) as
K, = Eyt)y? ()] = Zle K. The covariance matrices
K. andK, are termedrue covariance hereafter. The pa-
rameter© = [0y, - -- , 6] denotes the directions of sources.
Thesample covariance of the complete data is defined as

N
1 H
Cu = N ,;:1 X (t)xl (t)

In the E-step of the EM algorithm, the conditional expecta-
tion of C,; is estimated. In the M-step, the log likelihood (3)
is maximized using the conditional expectation®f;. This
procedure is summarized as follows.

(5)

E-Step:
c., = E[C xl|Cy;Kp]:Ki1*Kil(K§) lKil
+K< W) Gy (K TR, (6)
K = ZK”Z (7)
=1
N . ~ A g
Ko = Afa@)a@) + 71 ®)
M-Step:
; 6,)C? a(6,)
91)+1 _ a (l xl 9
L T @) ©
A (LG A (10)
b RUADIE

The symbot indicates the estimate in the EM algorithm. The
covariance matriceK,; and Ky are termedmodel covari-
ance hereafter to distinguish them from the true covariance.
The superscript? denotes the iteration number of the EM
algorithm. A brief derivation of the expected value of the
sample covarianc&[C,;] is shown in Appendix so that it
can be used for the analysis of signal separation in the EM
algorithm.

3. Analysisof the EM-based Approach

3.1. Beamformer

In this subsection, some basic knowledge of the beamformer,

which is used for the analysis, is reviewed [6]. The delay-
and-sum (DS) beamformer, the maximum likelihood (ML)
beamformer and the minimum variance (MV) beamformer

that focuses on théth sound source is given as

H alf
wWpHey(t) = —
DS () a?a]

(11)

wirLy(t) = (12)

W]\H4VY("') = (13)

The vectorswpg, wyrr, andw sy are their coefficients. In
the ML beamformer, covariand€,, is defined as the covari-
ance without the target signal and is defined as

K, =Y maaj +ol (14)
1£J

In the ML and MV beamformers, notches are made in the di-
rection of sound sources other thdth sound source based
on the information included in the covariankg, andC,,.
This effect is termed the adaptation and the separationiperf
mance is usually higher than that of the DS beamformer. In
Egs.(11), (12) and (13), the denominators of the coefficient
vectors are the normalization factors. The effect of signal
separation is included in their numerators.

3.2. Signal separation in the EM algorithm

In this sub-section, the effect of signal separation eméddd
in the EM algorithm is analyzed. From (35), the expected
value of the sample covariancexft) is written as

Model Observation
—N— —_——N—

E[C.] = (I- GH)K, + GC,G (15)
In (15), the first term is related to the model covariance
K, and the second term is related to the sample covariance
C, obtained from the observatidiy(1),--- ,y(N)}. From

(30), the matrixG which appears in (15) has the following

function:
x(t) = Gy(t).

Sincex(t) is a separated observation, it can be known @at
has a function of signal separation.
Using (37) (29) can be rewritten as

(16)

NN . H , _
G = [KoKeo Kont| K, (17)

Extracting the term related to th&h source,
G, =K, K, (18)

The matrixG; is termed the gain matrix hereafter. Substi-
tuting (4) into (18),

\ 1
K

PPN g
G, = waJaf}’JrMI} ; (19)
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Figure 1: Block diagram of the EM-based sound localization. " Frame

-
For the sake of simplicity, assuming that the power of noise
n(t) issmall, i.e.y; >> o /M, Figure 2: Relation of frame, block and segment.

~ A~ ~H-1L PN ~HA—
G.]zfy_]aja?Ky :('y(]a_])(agKy ) (20)

. ) i "1 By comparing this with (9) and (10), it can be seen that, in the
By comparing (20) with (13), the latter term in (a)K, _ M-step, the DS beamforming is performed on the separated
has the same form as that in the numerator in (13). From this, 5pservation (t)

AH+>—1 . . . . NS
the terma; K, has a function of signal separation equiva- . _ _ .
lent to the MV beamformer. The main difference betweenthe ~ Figure 1 summarizes the entire function. In the E-step,
MV beamformer (13) and (20) is that the sample covariance Using the estimated parameérthe MV beamformer is con-

C, is substituted by the model covariark®,. The effect of structed, and the separated observatioft) is estimated.
this substitution is as follows: Usingx;(t), the sample covariandg,; is then estimated. Fi-
nally, using the sample covarian€g,; and the model covari-

e Mismatch of the parameter in the model covariance anceK.,, the expected vaIuE[Cwl|Cy;Kzl] is obtained.

K, and the sample covarian€s,. In the M-step, using the expected valB{C,;|C,; K], the

) ) ) DS beamformer is constructed, and the parameters of the sig-
¢ While cross-terms of the signals exist@),, no cross- nals,® andK, are re-estimated.

terms exist ifk .

The mismatch of the parameters causes a mismatch of the di- 4. Proposed Method for Sound Source
rection of notches generated by the separation filter and the Tracking and Separation
location of the noise source. This results in a deteriomnatio
in the separation performance. Regarding the cross-term, i
the sample covarianc€,, the cross-terms between differ-
ent sources such agivzl[aisi(t)] [ajs;(t)]7 (i # j) exist.
WhenN — oo, these terms converge to 0 if the source sig-
nals are mutually uncorrelated. However, whgrs small,
the effect of the cross-terms i@, is not negligible, result-
ing in a deterioration in the separation performance. There
fore, when the estimated parameters are precise, the sepa-
ration performance of the gain mat® ; is expected to be
higher than that of the conventional MV beamformer. The ML and MV beamformers described in Section 3.1
On the other hand, the former tefma; has a function can be generalized as follows:
of recovering the microphone observation from the sepdrate
source signal and is not related to the signal separation.

4.1. Sound Separation

As described in Section 3.2, the gain ma@@y has a func-
tion of signal separation equivalent to that of the MV beam-
former. In this section, this property is utilized for signa
separation. Instead of directly using the gain ma€ix, a
linear beamformer is explicitly constructed by utilizinget
intermediate variables in the EM algorithm.

71/\
R aj

== 22
allR-1a, (@2)

3.3. Entire Function w
As described above, the E-step of the EM algorithm has a
function of signal separation. Next, the M-step is consid-

ered. The spatial spectrum estimated by the DS beamformer Here, &, is the location vector of the/th source (target
is given as [6] source) estimated in the sound localization. Wikers- C,

or R = K,, is employed, (22) becomes the original MV or
a’(9)C,a(0) ML beamformers, respectively. In this paper, these beam-

_ Wi _
P(0) = wps(9)Cywps(f) = (21) formers are approximated by using the intermittent vaeabl
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Figure 4: Variation of the estimated location during the-ite
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When (23) or (24) is employed, (22) becomes an approxima-
tion of the MV beamformer. When (25) or (26) is employed,
(22) becomes an approximation of the ML beamformer. The
choice of the covariancR. is discussed in Section 5.1.

The beamformer is updated eve¥yframes based on the
updates of these intermediate variables. A unit consisifng

Figure 5: Directivity of the gain matrig .

The final estimate in the iteratigd” = is employed as the
estimated location in this block. Also, the final intermit-

N frames is referred to as “block” hereafter. The relation tent variablesCZm= or Kf{"’”, is extracted. The beam-
of frame and block is depicted in Fig.2. Usually, the move- former (22) is then constructed and the signals within the
ment of sources is much slower than the dynamical change of block is processed with this beamformer. In the next block,
source signal such as speech. When the movement of sourcesthe same procedure is iterated with the final estimatés:

in a block is sufficiently small, it is expected that the signa  ghgk in the previous block as the initial values.

in this block can be separated by a linear fixed beamformer
that is optimized for this block.

Prax
s

5. Simulation

4.2, System 5.1. Static case

In this section, the EM-based sound localization proposed Before applying the proposed method to the case with mov-
by [1, 2] and the sound separation proposed in the previous ing sound sources, basic properties of this method are-inves
section is combined, and the entire procedure is described. tigated using the case when the location of sources is fixed.
A data unit consisting ofV, blocks is defined as “seg- In this sub-section, the direction of the sound sources were
ment” (see Fig.2.) For obtaining the initial value of the EM- © = [20,60]. The initial value of the EM algorithm was
based sound localization, the rough location of sound ssurc  [30, 70]. The input vector was generated using (1) with the
is estimated first by a conventional sound localizer such as theoretical value ofA and the complex random Gaussian
MUSIC [4] using all of the data in a segment. Since all of noise asS(t) andn(¢). The case for 1000 Hz was treated.
the data in a segment is used, the estimated location is the The microphone array used has a circular configuration with
averaged location when the sound sources move. This es- a diameter of 0.5 m and consists of 8 microphones.
timated location then becomes the initial value of the EM- Figure 3 shows the estimation error defined las=
based sound localization. (1/L) Y, 16; — 6] as a function of the number of averages
In the first block of the segment, the EM algorithm s iter- NV in estimatingC,. The estimation error is calculated as an
ated with the initial values estimated above uptit P,,,.. average of 128 trials. From this, it can be seen that the esti-
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Figure 6: Directivity of the proposed method and the con-  Figure 8: Estimated (dashed line) and true (solid lineptaj

ventional MV beamformer. tory of sources.
0 T
< C
-5¢ . — (@ 1 not being included in the covariance for the proposed method
-10f * S kol as described in Section 3.2.
15t . ] Figure 7 shows the noise reduction gain defined as a ra-

tio of the gain of the beamformer in the direction of the tar-
get source (source #1) and that in the direction of the noise
source (source #2). The results for four optionsRomdi-
cated in Eqgs.(23)-(26) are shown. A similar performance was
1 obtained folR =K, E[C,,], K,,, while the performance is
a0l ‘ ‘ : : reduced foR = E[C,]. HereafterR =K, which showed
Iteration the best performance in Fig.7 is employed as a covariance for

. . . . the beamformer (22).
Figure 7: Noise reduction gain of the proposed method as a

function of iterationp. The mark« corresponds to that for
the conventional MV beamformer.
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5.2. Dynamic case

In this section, the proposed method is applied to moving
sources. For simulating moving sources, matixvas dy-
namically changed. The initial position of the two sources
was [20,60]° . The sources moved on the circle with a di-

mation error was reduced to aroundlvBhen N = 8. For
larger NV, the estimation error was further reduced. However,

for larger IV, the tractability for moving sources is reduced.  5meter of 1.5 m with a velocity g8, 2] km/s. The trajectory
Therefore,NV = 8 is employed hereafter. _ of the sources is shown by the solid line in Fig.8. The level
~ Figure 4 shows the estimated locatitfhas a function of of noisen(t) was -20 dB relative to that of the signals(t).
iterationp. From this figure, it can be seen that the estimates 1 frequency component at 1000 Hz of the speech signal
approach the true values as the iteration proceeds. was employed as a source sigad).

_ Figure 5 shows the directivity of the gain mat. The Figure 8 shows the estimated trajectory (dashed line) for
directivity was calculated aB(6) = Gia(0) wherea() is the two sources. From this, it can be seen that the true trajec
the location vector for the arbitrary directiénand thenthe 5y s well estimated. However, when the signal for source
first element was extracted from(6) which corresponds to #2 is weak in the period [0.4,0.6] s (see Fig.9), the estithate
the gain for the first microphone. It can be seen that a notch trajectory differed from the true trajectory.
was made in the direction around the source #2 (60This Figure 10 shows the spectral component separated by the
is the effect of the gain matri&, as the MV beamformeras  ron0sed method using the beamformer. From this, it can be
described in Section 3.2. It can alsc_) be seen that the center gaan that the original waveform (Fig.9) is well recovered by
of the notch approaches the true direction of source #2 as e proposed method. This is due to the fact that the mov-
iteration proceeds. This is the effect of the model covaean ing velocity of the sources was slow (walking speed) and the

K, being improved by the iteration of the EM algorithm. movement of the sources in a block (64 ms) was sufficiently
Figure 6 shows the directivity of the proposed beam- 4.

former (22) withR = K,. For the sake of comparison,
the directivity of the conventional MV beamformer with the
sample covarianc€, is also shown. It can be seen that while
the attenuation for the noise source{§@s around 10 dB for In this paper, a method of sound source tracking and sep-
the conventional MV beamformer, a deep notch was made in aration based on the EM algorithm was proposed. The re-
60° for the proposed method. This is the effect of cross-terms  sults of simulation confirmed its applicability to the segpar

6. Conclusion



tion of signals from moving sources. However, this study
is in its early stage and the simulation conducted in this pa-
per was very simple and was not realistic. In the next stage,
the proposed method should be extended to the broad-band
case and should be applied to a problem in a real environ-
ment. Also, combining this method with tracking techniques
such as Kalman filter [5] or particle filter [8] would further
enhance the separation performance.

7. Appendix: Derivation of the expected value
of the covariance

In the linear measurement process giveryby Hx where

x is a 0-mean complex Gaussian random vector, the least
square estimate ofand its error covariand® = Cov|[x—X]

is given as [7]

x = K,H{MHK,H?) ly (27)
P = K,-KHIHK,H?)'HK, (28)

whereK, = E[xx']. UsingK, = HK,H” and defining
G as

G =K, H"(HK,H")"' = K, H'K_, (29)
(27) and (28) are rewritten as

% = Gy (30)
P = K, GHK, (31)

On the other hand, since is a Gaussian random vec-
tor, the least square estimate,also becomes the maximum
likelihood estimator:

/ xp(x[y)dx (32)

P - / (x—%)(x—Dply)dx  (33)

X

wherep(x|y) denotes the posteriori density. Using (32)
and (33), the conditional expectation®©f,, giveny, is

E[C,ly] = /XXHp(X|y)dx =P + xx"’ (34)

Substituting (30) and (31) into (34) and definiBy = yy*,
E[C,|ly] = K, — GHK, + GC,G" (35)
Substituting (29) into (35),
E[C.ly] = K,-K,H"K,'HK,
+K.H'K,'C,K, "HK! (36)
Let us defindK 1, -+ , K, as
K1 Ken] = HK, (37)

Extracting thelth bI(])Vck from (36) using (37), and substitut-
ingC, = (1/N)> ., y()y () for C, = yy™, we ob-
tain (6).
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Figure 9: Source signal (frequency component at 1000 Hz)
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Figure 10: Signals separated by the proposed method.
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