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Abstract

A method of sound localization using the EM algorithm has
been proposed by Feder and Weinstein [1] and Miller and
Fuhrmann [2]. In this paper, the signal separation aspect of
this algorithm is analyzed and is extended so that it can be
applied to separation of signals from moving sound sources.

1. Introduction

For using a speech interface in an everyday situation, separa-
tion of the target speech from environmental noise and other
competing speech is indispensable. Various approaches in-
cluding multi-microphone-based one such as adaptive beam-
forming and blind separation have been proposed (e.g., [3]).
When sound sources do not move, these approaches perform
well. When the sound sources move, however, the separation
performance is usually degraded since the speed of adapta-
tion is insufficient for dynamical change of source location.

[1] and [2] proposed a method of sound localization (not
separation) based on the EM (Expectation-maximization) al-
gorithm. In this method, a model of the covariance is intro-
duced in the process of estimating the source location and
the precision of this model is improved using expectation-
maximization iteration. Due to this model-based approach,
a higher performance of localization was achieved with a
smaller amount of observation compared to other conven-
tional localization method such as MUSIC [4]. This method
is further developed by [5] for tracking of multiple moving
targets by combining with Kalman-filter smoother.

An interesting feature of this method is that a signal sepa-
ration mechanism is embedded in the sound localization pro-
cess. In the present paper, this separation mechanism is fo-
cused on and is analyzed. Based on this analysis, the EM-
based approach is then extended to the separation of sound
from multiple moving sources.

2. Sound localization using the EM algorithm

In this section, the method of sound localization based on the
EM algorithm is briefly reviewed to facilitate understanding
of the following section.

2.1. Model of Signal

In this paper, a signal is treated in the frequency domain. The
short-time Fourier transform (STFT) of the microphone input
is denoted asy(ω, t) = [Y1(ω, t)], · · · , YM (ω, t)]T (input
vector), whereYm(ω, t) denotes the STFT of themth micro-
phone input at timet and frequencyω. Hereafter, the index
of frequencyω is omitted for the sake of simplicity. The in-
put vector forL directional signals plus background noise is
modeled as

y(t) = As(t) + n(t) (1)

Here, the matrixA consists of the location vector asA =
[a1, · · · ,aL]. Each location vectoral consists of a trans-
fer function of the direct path from thelth source to the mi-
crophone asal = [A1,le

−jωτ1,l , · · · , AM,le
−jωτM,l ] where

Am,l andτm,l denote the gain and the time delay between
thelth source and themth microphone. The vectors(t) con-
sists of the source spectrum ass = [S1(t), · · · , SL(t)]T .
The noise vectorn(t) consists of background noise as
n = [N1(t), · · · , NM (t)]T . The noise is assumed to be
0-mean Gaussian noise. The symbolM denotes the num-
ber of microphones. It is assumed thatE[s(t)sH(t)] ≡
Ks = diag(γ1, · · · , γL) and E[n(t)nH(t)] = σI, where
{γ1, · · · , γL} denotes the power of signals(t) while σ de-
notes the power of noisen(t).

2.2. EM Algorithm

In the EM-based approach, the input vector is decomposed
into that corresponding to each sound source,xl(t), as

y(t) =

L∑

l=1

xl(t) = Hx(t), (2)

wherexl(t) = alSl(t)+nl(t), x(t) = [xT
1 (t), · · · ,xT

L(t)]T ,
and H = [I, · · · , I]. The matrix I denotes the identity
matrix. The symbolnl(t)is an arbitrary decomposition of
the noise vectorn(t) and satisfies

∑L

l=1
nl(t) = n(t) and

E[nl(t)n
H
l (t)] = σ

L
I. A set of decomposed input vec-

tors,X = [x(1), · · · ,x(N)], is termedcomplete data in the
EM Algorithm. Using this decomposition, the log-likelihood
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function becomes

Lc(Θ,Ks;X) =

L∑

l=1

[

−N log detKxl −

N∑

n=1

xH
l (t)K−1

xl xl(t)

]

,

(3)
where

Kxl = γlala
H
l +

σ

L
I (4)

The covariance of the observationy(t) is written using (4) as
Ky ≡ E[y(t)yH (t)] =

∑L

l=1
Kxl The covariance matrices

Kxl andKy are termedtrue covariance hereafter. The pa-
rameterΘ = [θ1, · · · , θL] denotes the directions of sources.

Thesample covariance of the complete data is defined as

Cxl =
1

N

N∑

t=1

xl(t)x
H
l (t) (5)

In the E-step of the EM algorithm, the conditional expecta-
tion ofCxl is estimated. In the M-step, the log likelihood (3)
is maximized using the conditional expectation ofCxl. This
procedure is summarized as follows.
E-Step:

C
p
xl ≡ E[Cxl|Cy; K̂

p

y] = K̂
p

xl − K̂
p

xl(K̂
p

y)−1K̂
p

xl

+K̂
p

xl(K̂
p

y)
−1Cy(K̂

p

y)−1K̂
p

xl (6)

K̂
p

y =

L∑

l=1

K̂
p

xl (7)

K̂
p

xl = γ̂p
l a(θ̂p

l )a(θ̂p
l )H +

σ

L
I (8)

M-Step:

θ̂p+1

l = argmax
θl

aH(θl)C
p
xla(θl)

|a(θl)|2
(9)

γ̂p+1

l =
aH(θ̂p+1

l )Cp
xla(θ̂p+1

l )

|a(θ̂p+1

l )|4
(10)

The symbol̂· indicates the estimate in the EM algorithm. The
covariance matriceŝKxl andK̂y are termedmodel covari-
ance hereafter to distinguish them from the true covariance.
The superscript·p denotes the iteration number of the EM
algorithm. A brief derivation of the expected value of the
sample covarianceE[Cxl] is shown in Appendix so that it
can be used for the analysis of signal separation in the EM
algorithm.

3. Analysis of the EM-based Approach

3.1. Beamformer

In this subsection, some basic knowledge of the beamformer,
which is used for the analysis, is reviewed [6]. The delay-
and-sum (DS) beamformer, the maximum likelihood (ML)
beamformer and the minimum variance (MV) beamformer

that focuses on theJ th sound source is given as

z(t) = wH
DSy(t) =

aH
J

aH
J aJ

y(t) (11)

z(t) = wH
MLy(t) =

aH
J K−1

n

aH
J K−1

n aJ

y(t) (12)

z(t) = wH
MV y(t) =

aH
J C−1

y

aH
J C−1

y aJ

y(t) (13)

The vectors,wDS , wML andwMV are their coefficients. In
the ML beamformer, covarianceKn is defined as the covari-
ance without the target signal and is defined as

Kn =
∑

l 6=J

γlala
H
l + σI (14)

In the ML and MV beamformers, notches are made in the di-
rection of sound sources other thanJ th sound source based
on the information included in the covarianceKn andCy.
This effect is termed the adaptation and the separation perfor-
mance is usually higher than that of the DS beamformer. In
Eqs.(11), (12) and (13), the denominators of the coefficient
vectors are the normalization factors. The effect of signal
separation is included in their numerators.

3.2. Signal separation in the EM algorithm

In this sub-section, the effect of signal separation embedded
in the EM algorithm is analyzed. From (35), the expected
value of the sample covariance ofx(t) is written as

E[Cx] =

Model
︷ ︸︸ ︷

(I − GH)K̂x +

Observation
︷ ︸︸ ︷

GCyG
H (15)

In (15), the first term is related to the model covariance
K̂x and the second term is related to the sample covariance
Cy obtained from the observation{y(1), · · · ,y(N)}. From
(30), the matrixG which appears in (15) has the following
function:

x̂(t) = Gy(t). (16)

Sincex̂(t) is a separated observation, it can be known thatG

has a function of signal separation.
Using (37)�(29) can be rewritten as

G =
[

K̂x1K̂x2 · · · K̂xM

]H

K̂
−1

y . (17)

Extracting the term related to theJ th source,

GJ = K̂xJK̂
−1

y (18)

The matrixGJ is termed the gain matrix hereafter. Substi-
tuting (4) into (18),

GJ =
[

γ̂J âJ â
H
J +

σ

M
I
]

K̂
−1

y (19)
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Figure 1: Block diagram of the EM-based sound localization.

For the sake of simplicity, assuming that the power of noise
n(t) is small, i.e.,̂γJ >> σ/M ,

GJ ≃ γ̂J âJ â
H
J K̂

−1

y = (γ̂J âJ)(âH
J K̂

−1

y ) (20)

By comparing (20) with (13), the latter term in (20),â
H
J K̂

−1

y ,
has the same form as that in the numerator in (13). From this,

the termâ
H
J K̂

−1

y has a function of signal separation equiva-
lent to the MV beamformer. The main difference between the
MV beamformer (13) and (20) is that the sample covariance
Cy is substituted by the model covarianceK̂y. The effect of
this substitution is as follows:

• Mismatch of the parameter in the model covariance
K̂y and the sample covarianceCy.

• While cross-terms of the signals exist inCy, no cross-
terms exist inK̂y.

The mismatch of the parameters causes a mismatch of the di-
rection of notches generated by the separation filter and the
location of the noise source. This results in a deterioration
in the separation performance. Regarding the cross-term, in
the sample covarianceCy, the cross-terms between differ-
ent sources such as

∑N

t=1
[aisi(t)][ajsj(t)]

H(i 6= j) exist.
WhenN → ∞, these terms converge to 0 if the source sig-
nals are mutually uncorrelated. However, whenN is small,
the effect of the cross-terms inCy is not negligible, result-
ing in a deterioration in the separation performance. There-
fore, when the estimated parameters are precise, the sepa-
ration performance of the gain matrixGJ is expected to be
higher than that of the conventional MV beamformer.

On the other hand, the former term̂γJ âJ has a function
of recovering the microphone observation from the separated
source signal and is not related to the signal separation.

3.3. Entire Function

As described above, the E-step of the EM algorithm has a
function of signal separation. Next, the M-step is consid-
ered. The spatial spectrum estimated by the DS beamformer
is given as [6]

P (θ) = wH
DS(θ)CywDS(θ) =

aH(θ)Cya(θ)

|a(θ)|4
(21)

STFT

y(1) y(N)

Block
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Segment

.

.
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.
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Figure 2: Relation of frame, block and segment.

By comparing this with (9) and (10), it can be seen that, in the
M-step, the DS beamforming is performed on the separated
observationxl(t).

Figure 1 summarizes the entire function. In the E-step,
using the estimated parameterΘ̂, the MV beamformer is con-
structed, and the separated observationxl(t) is estimated.
Usingxl(t), the sample covarianceCxl is then estimated. Fi-
nally, using the sample covarianceCxl and the model covari-
anceK̂

p

xl, the expected valueE[Cxl|Cy; K̂
p

xl] is obtained.
In the M-step, using the expected valueE[Cxl|Cy; K̂

p

xl], the
DS beamformer is constructed, and the parameters of the sig-
nals,Θ̂ andK̂s, are re-estimated.

4. Proposed Method for Sound Source
Tracking and Separation

4.1. Sound Separation

As described in Section 3.2, the gain matrixGJ has a func-
tion of signal separation equivalent to that of the MV beam-
former. In this section, this property is utilized for signal
separation. Instead of directly using the gain matrixGJ , a
linear beamformer is explicitly constructed by utilizing the
intermediate variables in the EM algorithm.

The ML and MV beamformers described in Section 3.1
can be generalized as follows:

w =
R−1âJ

â
H
J R−1âJ

(22)

Here, âJ is the location vector of theJ th source (target
source) estimated in the sound localization. WhenR = Cy

or R = Kn is employed, (22) becomes the original MV or
ML beamformers, respectively. In this paper, these beam-
formers are approximated by using the intermittent variables
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Figure 3: Estimation error as a function ofN .

in the EM algorithm as follows:

R = K̂
p

y (23)

R = E[Cy] =
L∑

l=1

C
p
xl (24)

R = K̂n =
∑

l 6=J

K̂
p

xl (25)

R = E[Cn] =
∑

l 6=J

C
p
xl. (26)

When (23) or (24) is employed, (22) becomes an approxima-
tion of the MV beamformer. When (25) or (26) is employed,
(22) becomes an approximation of the ML beamformer. The
choice of the covarianceR is discussed in Section 5.1.

The beamformer is updated everyN frames based on the
updates of these intermediate variables. A unit consistingof
N frames is referred to as “block” hereafter. The relation
of frame and block is depicted in Fig.2. Usually, the move-
ment of sources is much slower than the dynamical change of
source signal such as speech. When the movement of sources
in a block is sufficiently small, it is expected that the signals
in this block can be separated by a linear fixed beamformer
that is optimized for this block.

4.2. System

In this section, the EM-based sound localization proposed
by [1, 2] and the sound separation proposed in the previous
section is combined, and the entire procedure is described.

A data unit consisting ofNb blocks is defined as “seg-
ment” (see Fig.2.) For obtaining the initial value of the EM-
based sound localization, the rough location of sound sources
is estimated first by a conventional sound localizer such as
MUSIC [4] using all of the data in a segment. Since all of
the data in a segment is used, the estimated location is the
averaged location when the sound sources move. This es-
timated location then becomes the initial value of the EM-
based sound localization.

In the first block of the segment, the EM algorithm is iter-
ated with the initial values estimated above untilp = Pmax.
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Figure 4: Variation of the estimated location during the iter-
ation of the EM algorithm. Solid line: true location, dashed
line: estimate.
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Figure 5: Directivity of the gain matrixG1.

The final estimate in the iteration̂ΘPmax is employed as the
estimated location in this block. Also, the final intermit-

tent variables,CPmax

xl or K̂
Pmax

xl , is extracted. The beam-
former (22) is then constructed and the signals within the
block is processed with this beamformer. In the next block,
the same procedure is iterated with the final estimatesΘ̂Pmax

andK̂
Pmax

s in the previous block as the initial values.

5. Simulation

5.1. Static case

Before applying the proposed method to the case with mov-
ing sound sources, basic properties of this method are inves-
tigated using the case when the location of sources is fixed.
In this sub-section, the direction of the sound sources were
Θ = [20, 60]. The initial value of the EM algorithm was
[30, 70]. The input vector was generated using (1) with the
theoretical value ofA and the complex random Gaussian
noise asS(t) andn(t). The case for 1000 Hz was treated.
The microphone array used has a circular configuration with
a diameter of 0.5 m and consists of 8 microphones.

Figure 3 shows the estimation error defined asE =
(1/L)

∑

l |θ̂l − θl| as a function of the number of averages
N in estimatingCy. The estimation error is calculated as an
average of 128 trials. From this, it can be seen that the esti-
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Figure 7: Noise reduction gain of the proposed method as a
function of iterationp. The mark∗ corresponds to that for
the conventional MV beamformer.

mation error was reduced to around 1.5◦ whenN = 8. For
largerN , the estimation error was further reduced. However,
for largerN , the tractability for moving sources is reduced.
Therefore,N = 8 is employed hereafter.

Figure 4 shows the estimated locationθ̂p
l as a function of

iterationp. From this figure, it can be seen that the estimates
approach the true values as the iteration proceeds.

Figure 5 shows the directivity of the gain matrixG1. The
directivity was calculated asP(θ) = G1a(θ) wherea(θ) is
the location vector for the arbitrary directionθ, and then the
first element was extracted fromP(θ) which corresponds to
the gain for the first microphone. It can be seen that a notch
was made in the direction around the source #2 (60◦ ). This
is the effect of the gain matrixG1 as the MV beamformer as
described in Section 3.2. It can also be seen that the center
of the notch approaches the true direction of source #2 as
iteration proceeds. This is the effect of the model covariance
K̂y being improved by the iteration of the EM algorithm.

Figure 6 shows the directivity of the proposed beam-
former (22) withR = K̂y. For the sake of comparison,
the directivity of the conventional MV beamformer with the
sample covarianceCy is also shown. It can be seen that while
the attenuation for the noise source (60◦ ) is around 10 dB for
the conventional MV beamformer, a deep notch was made in
60◦ for the proposed method. This is the effect of cross-terms
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Figure 8: Estimated (dashed line) and true (solid line) trajec-
tory of sources.

not being included in the covariance for the proposed method
as described in Section 3.2.

Figure 7 shows the noise reduction gain defined as a ra-
tio of the gain of the beamformer in the direction of the tar-
get source (source #1) and that in the direction of the noise
source (source #2). The results for four options forR indi-
cated in Eqs.(23)-(26) are shown. A similar performance was
obtained forR =Ky, E[Cn],Kn, while the performance is
reduced forR = E[Cy]. Hereafter,R =Ky which showed
the best performance in Fig.7 is employed as a covariance for
the beamformer (22).

5.2. Dynamic case

In this section, the proposed method is applied to moving
sources. For simulating moving sources, matrixA was dy-
namically changed. The initial position of the two sources
was [20, 60]◦ . The sources moved on the circle with a di-
ameter of 1.5 m with a velocity of[3, 2] km/s. The trajectory
of the sources is shown by the solid line in Fig.8. The level
of noisen(t) was -20 dB relative to that of the signalAs(t).
The frequency component at 1000 Hz of the speech signal
was employed as a source signals(t).

Figure 8 shows the estimated trajectory (dashed line) for
the two sources. From this, it can be seen that the true trajec-
tory is well estimated. However, when the signal for source
#2 is weak in the period [0.4,0.6] s (see Fig.9), the estimated
trajectory differed from the true trajectory.

Figure 10 shows the spectral component separated by the
proposed method using the beamformer. From this, it can be
seen that the original waveform (Fig.9) is well recovered by
the proposed method. This is due to the fact that the mov-
ing velocity of the sources was slow (walking speed) and the
movement of the sources in a block (64 ms) was sufficiently
small.

6. Conclusion

In this paper, a method of sound source tracking and sep-
aration based on the EM algorithm was proposed. The re-
sults of simulation confirmed its applicability to the separa-



tion of signals from moving sources. However, this study
is in its early stage and the simulation conducted in this pa-
per was very simple and was not realistic. In the next stage,
the proposed method should be extended to the broad-band
case and should be applied to a problem in a real environ-
ment. Also, combining this method with tracking techniques
such as Kalman filter [5] or particle filter [8] would further
enhance the separation performance.

7. Appendix: Derivation of the expected value
of the covariance

In the linear measurement process given byy = Hx where
x is a 0-mean complex Gaussian random vector, the least
square estimate ofx and its error covarianceP = Cov[x−x̂]
is given as [7]

x̂ = KxH
H(HKxH

H)−1y (27)

P = Kx − KxH
H(HKxH

H)−1HKx (28)

whereKx = E[xxH ]. UsingKy = HKxH
H and defining

G as

G = KxH
H(HKxH

H)−1 = KxH
HK−1

y , (29)

(27) and (28) are rewritten as

x̂ = Gy (30)

P = Kx − GHKx (31)

On the other hand, sincex is a Gaussian random vec-
tor, the least square estimate,x̂, also becomes the maximum
likelihood estimator:

x̂ =

∫

xp(x|y)dx (32)

P =

∫

(x − x̂)(x − x̂)Hp(x|y)dx (33)

wherep(x|y) denotes thea posteriori density. Using (32)
and (33), the conditional expectation ofCx, giveny, is

E[Cx|y] ≡

∫

xxHp(x|y)dx = P + x̂x̂
H (34)

Substituting (30) and (31) into (34) and definingCy = yyH ,

E[Cx|y] = Kx − GHKx + GCyG
H (35)

Substituting (29) into (35),

E[Cx|y] = Kx − KxH
HK−1

y HKx

+KxH
HK−1

y CyK
−H
y HKH

x (36)

Let us defineKx1, · · · ,KxM as

[Kx1 · · ·KxM ] = HKx (37)

Extracting thelth block from (36) using (37), and substitut-
ing Cy = (1/N)

∑N

t=1
y(t)y(t)H for Cy = yyH , we ob-

tain (6).
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Figure 9: Source signal (frequency component at 1000 Hz)�
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Figure 10: Signals separated by the proposed method.
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