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Abstract
In this paper, we focus on speech recognition using multi-
ple microphones with varying quality. The quality of one
channel may be much better than other channels and even
the output of standard microphone array techniques such as
the delay-and-sum beamformer. Therefore, it is important to
find a good indicator to select a channel for recognition. This
paper introduces Decoder-Based Channel Selection (DBCS)
that gives a criterion to evaluate the quality of each channel
by comparing the speech recognition hypotheses made from
compensated and uncompensated feature vectors. We evalu-
ate the performance of DBCS using speech data recorded by
a PDA-like mockup. DBCS with Delta-Cepstrum Normal-
ization for single channel compensation provides significant
improvement compared to the delay-and-sum beamformer.
In addition, the concept of DBCS is extended to the delay-
and-sum beamformer outputs of various subset of micro-
phones. This extension gives some additional improvement
of the speech recognition accuracy.

1. Introduction
It is well known that the performance of automatic speech
recognition systems degrades when they are used in noisy
environments. There have been huge efforts to solve this
problem, which include single-channel feature compensa-
tion and microphone array processing. In the single-channel
case, input feature vectors are normalized using statistical
assumptions for the speech or the noise model. Recently
we proposed a novel algorithm called Delta-Cepstrum Nor-
malization (DCN) [1], which is an extension of Histogram
Equalization (HEQ) [2] to the cepstral time-derivative do-
main. It was shown that DCN provides better compensation
than Cepstral Mean Normalization (CMN) [3] and HEQ, es-
pecially in highly noisy environments.

If the system has more than one microphone, geometric
separation of the speech and the noise is possible. A typi-
cal approach is the delay-and-sum beamformer [4], in which
the speech from the specific direction is enhanced by adding
phase-matched signals, while the noises are reduced by av-
eraging phase-unmatched signals. The concept of the delay-
and-sum beamformer is based on the assumption that the mi-

crophones are homogeneous; the only difference is the ge-
ometric position that makes a small difference of the phase
of input signals, and all the other conditions are equal. This
assumption may hold if the microphones are placed firmly
and maintained in a good condition. However, there are
some cases where the assumption does not hold. If one
holds a PDA that has microphones at each of the four cor-
ners and speaks to it, one microphone can be much closer
to the speaker’s mouth than others. In addition, a finger of
the speaker may interfere with a microphone. Similarly, that
kind of problem can occur in an automobile, if microphones
are placed at various places. In such cases, the input signals
have different characteristics, and the quality of the delay-
and-sum beamformer output is not always better than that of
the best single microphone. However, we have no way of
finding out which one is the best.

This paper proposes a new algorithm to select a suitable
channel for speech recognition using the output of the speech
recognizer. A single-channel feature compensation method
is applied to each channel, and both the compensated and
uncompensated features are fed into the speech recognizer.
The comparison of two outputs gives the estimation of the
degree of corruption of the original input. In this paper, DCN
is used as the single-channel feature compensation method,
but Mean and Variance Normalization (MVN)[5] and HEQ
are also investigated.

The remainder of this paper is organized as follows. In
the next section, the CMU PDA speech database is intro-
duced. It is also described how this database motivated us
to develop a system that can handle “inhomogeneous” mi-
crophones. After a brief description of DCN in Section 3,
Decoder-Based Channel Selection (DBCS) is proposed in
Section 4. Experimental results are shown in Section 5, and
the last section gives conclusions and future works.

2. CMU PDA speech database
Prior to this work, we had created the CMU (Carnegie Mel-
lon University) PDA speech database to investigate appli-
cability of various algorithms to Personal Digital Assistant
(PDA) speech recognition [6]. In [1], we used the single-
microphone version to evaluate DCN. In this work, we
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Table 1: Baseline word error rates.
PDA-A PDA-B Ave. Rel. imp.

CH. 1 25.7 67.7 46.7 -
CH. 2 23.5 64.9 44.2 -
CH. 3 18.9 61.2 40.1 -
CH. 4 29.0 67.5 48.2 -
Ave. 24.3 65.3 44.8 0.0
D&S 22.6 62.7 42.6 4.8
Best 15.8 54.1 34.9 22.1
CLS 11.1 25.0 18.1 59.6

use the multiple-microphone version. This version of the
database consists of two sets. The first set (PDA-A) was
recorded in a rather quiet condition whose average SNR is
estimated as 26dB. Each of eight speakers read 40-43 sen-
tences (total 330 sentences) chosen from the LDCWall Street
Journal database (WSJ0). The speaker held a PDA (HP iPaq
Pocket PC) so that the screen could be seen easily. The
sentences appeared on the screen, and the utterances were
recorded by the four microphones placed at the corners of
a mockup that is attached to the PDA. These four micro-
phones form a rectangle around the PDA, 5.5 cm across and
14.6 cm top-to-bottom. The second set (PDA-B), consist-
ing of the same sentences uttered by eight other speakers
in the same room, was recorded in a noisier condition with
the average SNR estimated as 17dB. All the utterances were
also recorded by the close-talking microphone worn by the
speaker.

Table 1 shows the baseline word error rates (WERs) for
the CMU PDA speech database. Throughout all experiments
described in this paper, the Sphinx-III decoder developed
by CMU [7] was used for decoding, with a trigram lan-
guage model. The acoustic models were trained using the
WSJ0 clean speech database. CMN is included in the base-
line processing. The delay-and-sum beamformer consists of
four steps: upsampling from 16kHz to 64kHz, beam steering
by calculating the correlation to the first microphone within
1ms, averaging with gain normalization, and downsam-

pling from 64kHz to 16kHz. Single channel WERs (CH.1
to CH. 4) show that there is a large inhomogeneity among
channels. The delay-and-sum beamformer (D&S) gives bet-
ter WERs than the average of four single-channelWERs, but
it is much worse than the best channel (CH. 3). Thus, if we
know which channel is the best, we could achieve 10.5% rel-
ative improvement of the WER from the average, and 7.2%
from the delay-and-sum beamformer. Moreover, if we have
the “oracle” knowledge to choose the best channel for each
utterance (shown as “Best”), we could obtain 22.1% relative
improvement from the average. Although it is not obvious
which channel should be chosen for each utterance, these re-
sults suggest that a good indicator of the channel quality is
necessary to deal with inhomogeneous microphones.
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Figure 1: Schematic diagram of DCN.

Table 2: A comparison of WERs obtained by single-channel
feature compensation algorithms.

PDA-A PDA-B Ave. Rel. imp.
Baseline (CMN) 24.3 65.3 44.8 0.0

MVN 20.4 59.5 40.0 10.7
HEQ 24.6 71.2 47.9 -6.9
DCN 21.9 57.3 39.6 11.6
D&S 22.6 62.7 42.6 4.8

D&S + MVN 18.6 56.7 37.6 16.0
D&S + HEQ 23.9 70.3 46.6 -4.1
D&S + DCN 20.9 56.0 38.4 14.2

3. Delta-Cepstrum Normalization
Delta-Cepstrum Normalization (DCN) [1] is a feature com-
pensation algorithms that is effective in highly noisy con-
ditions and could be implemented on small devices. Fig-
ure 1 shows the schematic diagram of DCN. First, the cep-
strum is normalized using Histogram Equalization (HEQ).
The delta-cepstrum is calculated using the normalized cep-
strum. HEQ is then applied to the delta-cepstrum to ob-
tain the better distribution of the delta-cepstral coefficients.
After that, inconsistency between the normalized cepstrum
and the normalized delta-cepstrum is reduced by the proce-
dure called -adjustment. Finally, the delta-cepstrum and
the delta-delta-cepstrum are re-calculated using the output of
the -adjustment procedure, and all the feature vectors are
fed into the decoder.

Table 2 shows the WERs obtained by various single-
channel feature compensation algorithms. Each WER on
the upper four lines represents the average of four chan-
nels. It is disappointing and opposite to the previous work
that HEQ gives worse results than the baseline, but at any
rate, DCN gives the best performance. It can be interpreted
that the overfitting effect of HEQ was compensated by DCN.
In particular, the improvement is greater for the noisy set
(PDA-B) as expected. The lower four lines show the results
obtained by compensating the output of the delay-and-sum
beamformer using the same single-channel algorithms. It can
be seen that combining the delay-and-sum beamformer and
those single-channel compensation algorithms gives some
additional improvements.
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Figure 2: Schematic diagram of DBCS.

4. Decoder-Based Channel Selection
As the baseline experiments have shown, it is important to
have a good indicator of the channel quality when the in-
put signal consists of inhomogeneous multiple channels. If
the inhomogeneity is caused by the input signal power, rep-
resenting the difference of the length between the speaker’s
mouth and the microphone, the estimated SNR could be a
good indicator. A more reliable indicator would be the like-
lihood given by the recognizer[8].

However, if there are other dominant factors, SNR-based
indicators can not work effectively. Likelihood-based in-
dicators are more reliable, but some confusing words may
give high likelihood. Instead, we use the effectiveness of the
single-channel feature compensation algorithm as the indica-
tor of the channel quality. If the feature compensation gives
more benefit, we assume that the original input is more con-
taminated.

The simplest way to evaluate the effectiveness of the
feature compensation is to compare the hypotheses made
with/without compensation. Two hypotheses are compared
using a DP-based alignment program. Thus, the channel that
had the fewest mismatched words is selected to be used for
recognition. This algorithm, referred to as Decoder-Based
Channel Selection (DBCS), could be implemented easily,
and gives great improvement to the recognition accuracy.
The schematic diagram of DBCS is shown in Fig. 2.

5. Experimental Results
The proposed algorithm was evaluated using the CMU PDA
speech database. Table 3 shows the WERs obtained by var-
ious channel selection methods. In this experiment, MVN,
HEQ, and DCN were used only for channel selection to eval-
uate the performance of channel selection. First, the NIST
SPQA tool [9] was used to estimate the SNR of each utter-
ance. The channel with the largest SNR was used for recog-
nition, but the result was at the same level with the base-
line. Second, the likelihood provided by the Sphinx-III de-
coder was used, and some WER improvement was obtained
in this case. Finally, DBCS was applied with three single-

Table 3: A comparison of WERs obtained by various channel
selection methods. MVN, HEQ, and DCN were used only for
channel selection.

PDA-A PDA-B Ave. Rel. imp.
SNR 25.3 64.3 44.8 0.0

Likelihood 20.7 63.6 42.1 6.0
MVN-DBCS 19.0 59.9 39.5 11.8
HEQ-DBCS 18.9 61.4 40.2 10.3
DCN-DBCS 19.2 58.5 38.9 13.2

Table 4: A comparison of WERs obtained by DBCS in com-
bination with single-channel feature compensation. The bot-
tom line shows the ideal case where the best of 4 DCN out-
puts is known for each utterance.

PDA-A PDA-B Ave. Rel. imp.
MVN-DBCS 16.3 55.6 35.9 19.9
HEQ-DBCS 18.7 64.2 41.4 7.6
DCN-DBCS 17.8 51.6 34.7 22.5

DCN-Likelihood 19.5 50.4 34.9 22.1
DCN-Best 14.2 42.9 28.5 36.4

channel feature compensation algorithms. One of the single-
channel compensation algorithms (MVN, HEQ, or DCN)
was applied to obtain the compensated feature vectors. Both
compensated and uncompensated feature vectors were used
to make the hypotheses for each channel, and the two hy-
potheses made from one channel were aligned. The channel
with the fewest mismatched words was used for recognition.
In this experiment, the uncompensated feature vectors were
used to evaluate the performance of channel selection only,
instead of using the compensated feature vectors to obtain
better results. As shown in the table, 10-13% relative im-
provements were achieved by DBCS, which are much higher
than likelihood-based channel selection. It should be noted
that three kinds of DBCS provide similar results even though
HEQ was not helpful as the single-channel feature compen-
sation for this database.

Table 4 shows the results of the same experiment ex-
cept that the compensated feature vectors were used after the
channel selection. Obviously, using the feature vectors com-
pensated by HEQ increases theWERs, that is consistent with
the baseline experiment. In contrast, results of MVN-DBCS
and DCN-DBCS are improved by using compensated feature
vectors. The best case, DCN-DBCS, gives 23% relative im-
provement from the baseline, that is 19% relative improve-
ment from the delay-and-sum beamformer. In these exper-
iments, likelihood-based channel selection also gives good
improvement, but DBCS is slightly better.

The concept of DBCS is also applicable to the output of
the delay-and-sumbeamformer. If some channels are reliable
and some are not, the delayed sum of only the reliable chan-
nels is expected to be cleaner than any single channel or the



Table 5: A comparison of WERs obtained by DBCS in com-
bination with single-channel feature compensation. The best
channel was selected from 4 single-microphone channels and
11 partial delay-and-sum beamformers.

PDA-A PDA-B Ave. Rel. imp.
MVN-DBCS 15.8 52.7 34.2 23.5
HEQ-DBCS 16.6 60.3 38.4 14.2
DCN-DBCS 15.6 47.8 31.7 29.2

DCN-Likelihood 19.1 47.8 33.5 25.2
DCN-Best 11.2 35.1 23.2 48.3

delayed sum of all channels. Since we have four channels,
there are eleven combinations of two, three, or four channels.
Table 5 shows the WERs obtained using the single-channel
inputs and those ‘partial’ beamformers. The WERs are re-
duced in all cases. In particular, DCN-DBCS gives excel-
lent performance, which is 29% relative improvement from
the baseline, 26% from the delay-and-sum beamformer, and
5.4% from likelihood-based channel selection.

The problem of the proposed algorithm is the computa-
tional cost. It requires two decoding runs for each channel,
resulting in eight runs in the four channel case, or thirty runs
if we apply it to the partial beamformers. One solution for
this problem is to use the best channel that is selected for the
preceding utterance. We carried out another experiment, in
which the best channel is selected using one utterance, and
the result is used for utterances. The results are shown in
Fig. 3. Obviously, a large gap exists between and

, which means that there is an environmental factor
that varies utterance by utterance. For , WER ap-
proaches asymptotically to the value of the delay-and-sum
beamformer. However, some improvements can still be ob-
tained at or .

6. Conclusions
In this paper, the importance of channel quality estimation
was introduced. If multiple microphones are not homoge-
neous, due to thier relative position or other reasons, the
output of the standard delay-and-sum beamformer is better
than the average of all channels, but worse than the best
channel. Therefore, it is important to find a good indicator
to select a channel for recognition. We proposed Decoder-
Based Channel Selection (DBCS), in which the hypothe-
ses made by compensated and uncompensated feature vec-
tors were aligned to evaluate the effectiveness of the single-
channel feature compensation. Using the channel that has
the fewest mismatched words, the WER can be greatly re-
duced. DBCS with Delta-Cepstrum Normalization (DCN)
for single-channel compensation gave 26% relative WER
reduction from the standard delay-and-sum beamformer if
we use all single channels plus all possible combinations of
them.

DBCS is computationally expensive because it requires
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Figure 3: WERs obtained with various intervals of channel
selection. DCN was applied in all cases.

two decoding runs for each channel during channel selec-
tion. Processing time can be reduced if we use the selection
result for the preceding utterance, although the improvement
becomes smaller. Another approach, which is one of our fu-
ture works, would be to use a simpler decoder for channel
selection while the full decoder is used for the second path.
Omitting the language model scoring could reduce the pro-
cessing time, as much as replacing the HMM based decoder
with DTW or GMM based decoders.
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