
Harmonicity Based Blind Dereverberation with Time Warping

Tomohiro Nakatani, Keisuke Kinoshita, Masato Miyoshi, Parham S. Zolfaghari

NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan

�nak,kinoshita,miyo,zparham�@cslab.kecl.ntt.co.jp

ABSTRACT

Speech dereverberation is desirable in applications such as robust
automatic speech recognition (ASR) in the real world. Although
a number of dereverberation methods have been exploited, dere-
verberation is still a challenging problem especially when using
a single microphone. To overcome this problem, a harmonicity
based dereverberation method (HERB) has recently been proposed.
HERB can blindly estimate the inverse filter of a room impulse re-
sponse based on harmonicity of speech signals and dereverberate
the signals. However, HERB uses an imprecise assumption that
hinders the dereverberation performance, that is, the fundamental
frequency (��) of a speech signal is assumed to be constant within
a short time frame when extracting the features of harmonic compo-
nents. In this paper, we introduce time warping analysis into HERB
to remove this bottleneck. Time warping analysis expands and con-
tracts the time axis of a signal in order to make the �� of the signal
constant, and makes it possible to estimate harmonic components
precisely even when their frequencies change rapidly. We show that
time warping analysis can effectively improve the dereverberation
effect of HERB when the reverberation time is longer than 0.1 sec.

1. INTRODUCTION
Harmonicity has long been studied as a robust feature of speech sig-
nals in the real world. It is cited as a major clue in relation to a per-
son’s ability to extract a desired speech from other sounds [4]. Many
speech enhancement methods employ a harmonicity-based sound
segregation scheme, and have improved the performance of auto-
matic speech recognition (ASR) [10, 16]. However, these methods
have not succeeded in extracting the precise harmonic structure of
speech signals in the presence of long reverberation. This is because
different fundamental frequencies (��) in different time regions are
mixed into the reverberation, and thus the harmonic structure is
severely degraded. Therefore, harmonicity has not been taken into
account as a primary cue for enhancing or dereverberating reverber-
ant speech signals.

Long reverberation, on the other hand, has a severe detrimen-
tal effect on ASR. Although several adaptation techniques, such as
cepstral mean normalization (CMN) [3] and maximum likelihood
linear regression (MLLR) [8], have been proposed for recogniz-
ing reverberant speech signals, they can only deal with short re-
verberation. It is reported that the recognition performance cannot
be improved sufficiently when the reverberation time is longer than
0.5 sec even if the acoustic models are used that are trained with a
matched reverberation condition [7]. Therefore, the dereverberation
of speech signals is essential for ASR in a reverberant environment.

Several blind dereverberation techniques have been exploited
that use microphone array systems. A typical technique involves
estimating the directions of arrival (DOAs) of a direct speech sig-
nal, and enhancing signal components coming from that direction.
The delay-and-sum beamformer is often used for this purpose [5].

However, it requires a large number of microphones to achieve a
large dereverberation gain. By contrast, another technique based on
inverse filtering can suppress reverberation using a small number of
microphones. Theoretically, the reverberation is completely elimi-
nated by arranging microphones so that the transfer functions from
� signal sources to � � � microphones have no common zeros
[9]. Several blind techniques for estimating the inverse filter have
also been proposed based on the assumption that a source signal is a
statistically independent and identically distributed (i.i.d.) sequence
[2, 6]. These methods can precisely dereverberate an observed sig-
nal if the source signal is actually an i.i.d. sequence. However,
they cannot appropriately deal with speech signals because speech
signals have inherent properties, such as harmonicity and formant
structure, making their sequences statistically dependent. This ap-
proach inevitably destroys such essential properties of speech sig-
nals.

To overcome these problems, a new dereverberation principle
has recently been proposed based on the harmonicity of speech sig-
nals, and a single channel blind dereverberation method, known
as Harmonicity based dEReverBeration (HERB) was presented
[12, 14]. According to this principle, a filter that enhances the har-
monic structure of observed reverberant signals approximates the
inverse filter. HERB estimates this filter by calculating the aver-
age transfer function that transforms observed signals into their di-
rect harmonic components estimated by an adaptive harmonic filter.
The experiments showed that HERB can effectively dereverberate
speech signals when sufficiently long observed signals are given.
However, it is found that HERB does not have as much dereverber-
ation effect for male speech signals as for female ones. In addition,
HERB cannot appropriately deal with higher frequency components
when their frequencies change rapidly with time.

In this paper, we present an extended version of HERB, referred
to as HERB with TimE wArping (HERB-TEA), to improve the pre-
ciseness of the dereverberation. We believe the above problems
with HERB to be caused by its imprecise treatment of harmonic
components, that is, �� is dealt with as a constant within a short
time frame. To overcome this problem, we introduce time warping
analysis that expands and contracts the time axis of the signals to
make their ��s approximately constant. Time warping analysis al-
lows us to extract the precise features of harmonic components [1].
Our experiments show that this extension successfully improves the
performance of HERB, especially for male speech signals.

In section 2, we describe HERB and its problems. Time warp-
ing analysis is incorporated in HERB in section 3. Experiments and
concluding remarks are presented in sections 4 and 5, respectively.

2. HERB – HARMONICITY BASED
DEREVERBERATION METHOD

In this section, we first briefly describe the property of the inverse
filter, referred to as the dereverberation filter, estimated by HERB,
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Figure 1: Diagram of HERB: each observed signal, ����, is first fil-
tered by an adaptive harmonic filter, � , to obtain �����. The average
ratio of ����� to ���� in the frequency domain over different obser-
vations is calculated to determine the dereverberation filter, ����.
Finally, ���� is dereverberated by being convolved with ����.

and then discuss the problems with HERB.

2.1. Dereverberation Filter Estimated by HERB

Figure 1 shows a diagram of HERB. HERB estimates the derever-
beration filter as an average filter that transforms observed rever-
berant signals into the output of an adaptive harmonic filter roughly
estimating the direct harmonic components in the observed signals.
The dereverberation filter,� ���, is calculated as follows1:

� ��� � �

�
�����

����

�
	 (1)

where � and �� are the observed reverberant signal and the out-
put of an adaptive harmonic filter, respectively. ���� is an average
function that calculates the average value of ��
� for different ob-
served signals from a sound source.

This filter has been proven to approximate the inverse filter of
a room transfer function for speech signals2. Here, we briefly in-
terpret the property of this filter after introducing a speech signal
model.

2.1.1. Speech Signal Model

A speech signal, ����, can be modeled by the sum of the harmonic
components, �����, derived from the glottal vibration, and non-
harmonic components, �����, such as fricatives and plosives as
eq. (2).

���� � ����� � ������ (2)

The observed reverberant signal, ����, is then obtained by mul-
tiplying a room transfer function ��� by ���� as eq. (3). This
transfer function can also be divided into two functions, � and �.
The former transforms � into the direct signal, ��, and the latter
into the reverberation part, ��, as shown in eq. (4).

���� � �������	 (3)

���� � �������� ���������� (4)

Then, the observed signal, � , is also represented as eq. (5) using
eqs. (2) and (4).

���� � ��������� � ���������� ����������� (5)

The first term on the right side of eq. (5), ���, is the direct signal
of the harmonic components, and is as highly periodic as the har-
monic components in the source signal. By contrast, ��� in the

1In this paper, time and frequency domain signals are represented by
lower and upper case symbols, respectively. Arguments “���” that represent
the center frequencies of the short time Fourier transformation (STFT) bins
are often omitted from frequency domain signals.

2A physical interpretation of this filter is given in [12]

second term on the right side is the reverberation part of the har-
monic components, and thus has degraded harmonicity. �� is not
harmonic because �� is originally a non-harmonic part. Therefore,
the second term on the right side represents the non-harmonic parts
in the observed signal.

Of these components, ��� can approximately be extracted
from � by an adaptive harmonic filter. This approximated direct
signal ����� can be modeled as follows:

����� � ��������� � � ������ � ������	 (6)

where ������ and �����, respectively, are part of the reverberation
of �� and part of the direct signal and reverberation of ��, which
unexpectedly remain in �� after the harmonic filtering. We assume
that all the estimation errors in �� are caused by ��� and �� in
eq. (6).

2.1.2. Interpretation of Dereverberation Filter

By substituting � and �� in eq.(1) with eqs. (3) and (6), we can
derive the following equation [14]:

� ��� �
���� � �����

���
��������� � ��������	 (7)

where

����� � �

�
������

�����

�
���������������

	 (8)

where ���� is a probability function, and ����� represents an av-
erage function under a condition where � holds.

Equation (7) means that � approximately coincides with the
product of �� � ���
 and ������ � �����. The former, �� �
���
 , strictly equals the inverse filter, �
 , when an adaptive
harmonic filter can completely reduce ��� in eq. (6) without any er-
rors. Although it is very difficult to reduce ��� completely, a major
part of ��� can be eliminated with an adaptive harmonic filter. In
addition, �� is defined as an average filter that transforms �� to ���.
Therefore, �� is expected to become a transformation that produces
reduced reverberation. As a consequence, the signal obtained by
multiplying the observed signal � by �� � ���
 is expected to
be the sum of the direct signal and the reduced reverberation, that
is, ��� � ���
�� � ��� ���. By contrast, ������ � ����� in
eq. (7) is the probability that the harmonic component has a larger
energy than the non-harmonic component, and has a real value be-
tween 0.0 and 1.0. This term changes the gain of eq. (1) but does
not affect its dereverberation function.

2.2. Adaptive Harmonic Filter

As discussed above, the precise extraction of direct harmonic com-
ponents with the adaptive harmonic filter is very important for
HERB. For this purpose, HERB uses a harmonic filter based on
a sinusoidal representation. Using this filter, �� of the observed
signal at each time frame is first estimated from an observed sig-
nal, ����. Then, the amplitudes and phases of individual harmonic
components are extracted from a short time Fourier transformation
(STFT) of ���� as follows:

����� �
�
�

����� � ���������
����������	 (9)

�	
� � ������� �������	 (10)

�	
� � � ������ ������	 (11)



where � and �� are respectively the index of a waveform sample
and its time, �	
� and �	
� are respectively the amplitude and phase
of the �-th harmonic component at a time frame whose center time
is ��, ���� is �� of the frame, ����� is a window function, and ����
is a function that quantizes a continuous frequency into a discrete
center frequency of the nearest STFT bin. Finally, the output of the
filter, �����, is synthesized by adding sinusoids as eq. (12) and by
combining them over succeeding frames based on the overlap-add
synthesis as eq. (13).

������� �
�
	

�	
� ��	�� ������� � ��� � �	
��	 (12)

������ �
�
�

����� � ������������������	 (13)

where�� is a frame shift in samples and ����� is a window function.

2.3. Problems

There are, however, the following problems involved with the adap-
tive harmonic filter used in HERB.

� Features of harmonic components are extracted by assuming
that the �� of speech signals is constant within a short time
frame using eqs. (9), (10) and (11), although �� generally
changes even in a local time region. This causes estimation
errors in a direct signal, �����, and thus degrades the derever-
beration filter estimation. Because harmonic frequencies in
higher frequency regions change more rapidly than those in
lower frequency regions, the estimation errors increase with
frequency.

� When the �� of a speech signal is small, it is difficult to
distinguish its direct signal from its reverberation part using
an adaptive harmonic filter. This is because the differences
between adjacent harmonic frequencies at a frame are small
in such cases and relatively large parts of the reverberation
overlap the direct signal.

As a consequence, the dereverberation performance of HERB is
consistently worse for male speech signals than for female speech
signals. In certain experiments using male speech signals, HERB
even increased the energies of the reverberations compared with
those of room impulse responses in time regions long after the direct
signals had arrived.

3. HERB WITH TIME WARPING
To improve the dereverberation performance of HERB, we ex-
tended it by introducing time warping analysis into its adaptive har-
monic filtering. This extended method is referred to as HERB with
TimE wArping (HERB-TEA) in this paper.

3.1. Adaptive Harmonic Filter with Time Warping

Figure 2 illustrates the idea of time warping and Fig. 3 shows the
flow of adaptive harmonic filtering when time warping analysis is
employed. The time warping analysis first uses a time-warping
function that expands and contracts the time axis of a signal in the
original time domain to obtain a signal with an approximately con-
stant �� in a warped time domain. The amplitudes and phases of the
sinusoidal components are extracted from the signals in the warped
time domain. A harmonicity enhanced signal is then synthesized in
the original time domain using the extracted features and the time
warping function.

Let � � ����� be the time-warping function that transforms
���� within a short time frame, whose center time is ��, in the orig-
inal time domain into ���

��� in the warped time domain, then the
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Figure 2: Waveforms (upper panels) and spectrograms (lower pan-
els) of a signal before and after time warping. In this example, the
fundamental frequency of the signal increases with time in the orig-
inal time domain while it is constant in the warped time domain.
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Figure 3: Processing flow of adaptive harmonic filtering with time
warping

relation between ���� and ���
��� is represented as follows:

���
������� � ���� for ��� ��� �

�



� (14)

where � is the length of the frame. In particular, let ���� be the
phase of the �� component of ����, and ���� be that of ���

���,
then the relation between ���� and ���� is represented as eq. (15).

�������� � ���� for ��� ��� �
�



� (15)

In time warping analysis, we determine ����� so that it makes �����
constant within a time frame as eq. (16).

�����

��
� ���� for ���

���� �� ��� �
�



	 (16)

where �� � ������. �� and ���� are parameters that can be set to
an arbitrary number3. In addition, to simplify the calculation, we
assume that the time derivative of �� is constant within a short time
frame in the original time domain, that is:

������

���
� ���� for ��� ��� �

�



	 (17)

where ���� is the derivative of �� at time ��. Then, the time warping
function, �����, that satisfies eqs. (15), (16) and (17) is derived as
follows:

����� � ��� ���
�

����

 ����

� ��� ���
����
����

� ��	 (18)

3For example, �� � � and ���� �
���� are reasonable parameter settings.
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(19)
The signal, ���

���, in the warped time domain can then be ob-
tained from ���� as follows:

���
��� � ����

������� (20)

The �� of this signal is expected to be constant because of the as-
sumption of eq. (16), and thus, it is appropriate to model the sig-
nal with a sinusoidal representation. Let ���

��� be the STFT of
���

���, then the amplitude �	
� and phase �	
� of the �-th har-
monic component in the warped time domain are extracted as fol-
lows:

���
��� �

�
�

����� � ������
�����

����������	 (21)

�	
� � ����
���� �������	 (22)

�	
� � � ���
���� ������� (23)

Then, the output of the harmonic filter in the original time domain
at this frame can be synthesized as follows:

������� �
�
	

�	
� ��	���� ������������� ��� � �	
��	 (24)

Finally, the overlap-add synthesis is used in a similar way to eq. (13)
in order to combine signals over succeeding frames.

In our implementation, we calculate the derivative of ��, or ����
in eqs. (18) and (19), by approximating each local time trajectory of
�� with a quadratic function and by extracting the derivative of the
function. The value can easily be calculated as follows:

���� �

�

���
 ��������

���
!��
�

���
 �
	 (25)

where �� is a frame shift, !� is a sampling frequency, and � speci-
fies the local time region taken into account for this approximation.

3.2. Processing Flow of HERB-TEA

HERB-TEA is implemented using the same processing flow as
HERB [13], except that it uses time warping analysis with its adap-
tive harmonic filtering.

One of the most important issues when implementing HERB
is to estimate precise �� values in the presence of long reverber-
ations. This is because they directly affect the performance of the
adaptive harmonic filtering. For this purpose, HERB adopts a robust
recently proposed �� estimator [11], and introduces a complemen-
tary scheme for estimating the �� values and the dereverberation
filter [13]. In this scheme, 1) �� values are first estimated directly
from reverberant signals, and the dereverberation filter is calculated
based on the �� values, 2) then, the �� values are calculated again
but more precisely using signals dereverberated by the dereverbera-
tion filter, and the dereverberation filter is also estimated more pre-
cisely using these �� values, and 3) finally, the �� values and the
dereverberation filter are gradually refined through the iteration of
this complementary estimation.

The implementation is described in detail in [13].
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Figure 4: Energy decay curves of the room impulse responses
(thin solid line) and dereverberated impulse responses (HERB: thin
dashed line, HERB-TEA: thick line) for different reverberation
times (rtime) when using male speech signals as training data.
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Figure 5: Energy decay curves of the room impulse responses
(thin solid line) and dereverberated impulse responses (HERB: thin
dashed line, HERB-TEA: thick line) for different reverberation
times (rtime) when using female speech signals as training data.

4. EXPERIMENTS
We evaluated the performance of HERB-TEA using the derever-
beration task described in section 4.1 in terms of the energy decay
curves of the impulse responses and ASR.

4.1. Task: Dereverberation of Word Utterances

The task used in our experiments was the dereverberation of rever-
berant word utterances. We used 5240 Japanese word utterances
provided by a male and a female speaker (MAU and FKM) in-
cluded in the ATR database as source signals, "���. We used four
impulse responses measured in a reverberant room whose reverber-
ation times were about ���, ��
, ��, and ��� sec. Reverberant sig-
nals, ����, were obtained by convolving "��� with the impulse re-
sponses. Each dereverberation filter was estimated using all male
word utterances or all female word utterances.

In the experiments, we assumed that each word utterance
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(c) Dereverberated signal

Figure 6: Waveforms (left panels) and spectrograms (right panels) of (a) source signal, (b) observed signal, and (c) dereverberated signal, for
the utterance “Ba-Ku-Dai.” (Reverberation time: 1.0 sec)

with reverberation was recorded separately, and that there is no
time-overlap between utterances including reverberation durations.
When we estimated the dereverberation filter using eq. (1), we cal-
culated the STFT of ���� and ����� with a short time frame whose
length was long enough to contain each whole word utterance with
zero padding. The length of the dereverberation filter was 131,072
taps; that is, we used a 10.9 sec rectangle window for the � and
�� calculations. By contrast, we used a much shorter time frame,

that is, a 42 msec hanning window and 1 msec window shift for the
�� estimation and adaptive harmonic filtering in order to extract the
time-varying features of the harmonic components. We used signals
sampled at 12 kHz.

4.2. Energy Decay Curves of Impulse Responses

Figures 4 and 5 show energy decay curves of room impulse re-
sponses and dereverberated impulse responses obtained by HERB
and HERB-TEA while controlling the reverberation time. Each
dereverberated impulse response was obtained by convolving a
room impulse response with its dereverberation filter, and each de-
cay curve was calculated using Schroeder’s method [15].

These figures show that HERB-TEA could effectively reduce
the reverberation energy when the reverberation time was longer
than 0.1 sec. HERB-TEA reduced the energy more successfully
than HERB in all cases. This improvement was especially clear
with male speech signals, that is, the energies of the dereverberated
impulse responses in higher time regions were, in certain cases,
increased compared with energies of the room impulse responses
when using HERB, while they were effectively reduced when using
HERB-TEA. In addition, HERB-TEA also reduced the energy just
after the direct signal more successfully than HERB in most cases.
Because this part of the reverberation energy has the largest effect
on speech intelligibility [17], HERB-TEA is expected to improve
it4.

Figure 6 shows waveforms and spectrograms of a source sig-
nal, an observed reverberant signal, and a signal dereverberated by
HERB-TEA. The source signal is a Japanese word “Ba-Ku-Dai” ut-
tered by a male speaker. The reverberation time is 1.0 sec. It shows
that HERB-TEA could effectively restore the time and frequency

4The effectiveness of HERB-TEA can clearly be confirmed by listening
to the dereverberated signals included in the proceedings CD.
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Figure 7: Word recognition rates (WRRs) of reverberant and dere-
verberated signals when using (a) a clean model and (b) a HERB
model under different reverberation time conditions.

structure of the source signal.

4.3. Speaker Dependent Word Recognition Rate

We evaluated the speaker dependent word recognition rate (WRR)
of speech signals dereverberated by HERB-TEA. For this purpose,
we prepared two types of acoustic monophone model. One was
a model trained on source signals, referred to as a clean model,
and the other was a model trained on signals obtained by applying
HERB-TEA to the source signals, referred to as a HERB model.
We used the clean model to recognize both reverberant and dere-
verberated signals, and the HERB model to recognize dereverber-
ated signals. 4740 words randomly selected from 5240 words were
used as training data, and the remaining 500 words were used as
test data. 12-th order MFCCs, 12-th order delta MFCCs, three state
HMMs, five mixture Gaussian distributions, 25 msec frame length,
and 5 msec frame shift were adopted as the analysis conditions.

Figure 7 (a) shows the WRRs we obtained using the clean
model. The average WRRs of dereverberated male and female
speech signals were improved compared with those of reverberant
signals. However, the average WRRs of the dereverberated signals
were at most 60%. This result means that HERB-TEA cannot re-
store the precise spectral shapes of the original source signals al-
though it can greatly reduce the reverberation. We consider this
result to be caused by the limitation of HERB-TEA, that is, the
probability function ���� in eq. (7) modifies the spectral shapes of
the dereverberated signals. By contrast, Fig. 7 (b) shows the WRRs
obtained using the HERB model. The WRRs of the dereverberated
signals were more than 90% under all reverberation conditions al-
though only clean source signals were used for the acoustic model
training. This means that speech signals dereverberated by HERB-
TEA have similar spectral shapes independent of the reverberation
time. In other words, HERB-TEA can successfully reduce the spec-
tral variations in speech signals produced by reverberation without
losing the speech features essential for ASR.

5. CONCLUSION
This paper proposed a method for improving the dereverberation
effect of the harmonicity based dereverberation method (HERB) by
introducing time warping analysis into its adaptive harmonic filter-
ing. The time warping analysis allows us to extract features of har-
monic components precisely even when their frequencies change
within a short time frame. Experimental results showed that HERB
with time warping (HERB-TEA) provided better dereverberation
performance than HERB in terms of the energy decay curves of the
impulse responses under various reverberation conditions. In addi-
tion, speaker dependent word recognition rates could be increased
to more than 90% even under a 1.0 sec reverberation time condition
when using the HERB model as the acoustic model. This means
that HERB-TEA can effectively reduce spectral variations produced
by different impulse responses without losing essential features for
ASR. Future work will include an investigation of how such high
quality speech dereverberation can be achieved with fewer speech
data.
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