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ABSTRACT

An algorithm for the separation of sound sources is pre-

sented. Each source is parametrized as a convolution between a

time-frequency magnitude spectrogam and an onset vector.

The source model is able to represent several types of sounds,

for example repetitive drum sounds and harmonic sounds with

modulations. An iterative algorithm is proposed for the estima-

tion the parameters. The algorithm is based on minimizing the

reconstruction error and the number of onsets. The number of

onsets is minimized by applying the sparse coding scheme for

onset vectors. A way of modeling the loudness perception of

the human auditory system is proposed. The method com-

presses high-energy sources, and enables the separation of low-

energy sources which are perceptually significant. The algo-

rithm is able to separate meaningful sources from real-world

signals. Simulation experiments were carried out using mix-

tures of harmonic instruments. Demonstration signals are

available at http://www.cs.tut.fi/~tuomasv/demopage.html.

1.  INTRODUCTION

In real-world audio signals several sound sources are usu-

ally mixed. The process in which individual sources are esti-

mated from the mixture signal is called sound separation.

Humans are extremely skilful in “hearing out” individual

sound sources from complex mixtures even in noisy condi-

tions. Computational modeling of this ability is very difficult.

All the existing separation systems are limited in either polyph-

ony or quality. The most successful ones are those which try to

extract only the most prominent source [1, 2].

Without any prior knowledge of the sources, the problem

of estimating several overlapping sources from one input signal

is ill-defined. By making some assumptions of the underlying

sounds, it is possible to analyze and synthesize signals which

are perceptually close to the originals before mixing. Harmon-

icity of sources has been assumed in most sound separation

systems which separate musical sounds. In this paper the

assumption of recurrence of sources is used.

Independent Component Analysis (ICA) has been success-

fully used to solve blind source separation problems in several

application areas. A related technique called Independent Sub-

space Analysis has been used for sound separation by Casey

and Westner [3] and FitzGerald et al. [4]. The method tries to

find sound spectra which are statistically independent from

each other. However, it can be claimed that in the case of music

signals independency is usually not a valid assumption. In fre-

quency domain the fundamental frequencies of the sources are

often in a harmonic relationship, and in the time domain the

sources have dependencies because of rhytmic concordance.

A data-adaptive technique very similar to ICA called

sparse coding has been successfully used for example to model

the functioning of the early stages of vision [5]. The term

sparse is used to refer to a signal model, in which the data is

represented in terms of a small number of active elements cho-

sen out of a larger set. The basic idea is shortly described in

Section 1.1. Sparse coding has been used for audio signal sepa-

ration e.g. by Plumbley et al. [6], Smaragdis & Brown [7], and

Virtanen [8]. These studies show that by using the sparseness

assumption, it is possible to some degree estimate sound

sources without any other knowledge of sources, while it is

clear that for robust high-quality separation more assumptions

have to be used.

1.1. Sparse coding
The basic signal model in sparse coding is the same as in

ICA: each observation vector xi is a linear mixture of source

vectors sj:

, (1)

where ai,j is the weight of jth source in ith observation. Both the

source vectors and weights are unknown. In a matrix form the

model can be expressed as .

In ICA, the estimation is done by assuming statistical inde-

pendence of sources. The sources are obtained by multiplying

the observation matrix by the estimate of the unmixing matrix

. If the mixing weights and sources are restricted to

non-negative values, this estimation method can not be used.

In sparse coding the sources are assumed to be non-active

most of the time which means that the mixing matrix has to be

sparse. The estimation can be done using a cost function which

minimizes the reconstruction error and maximizes the sparse-

ness of the mixing matrix. In a propabilistic framework, mini-

mizing the cost function corresponds to maximizing the log-

likelihood of sources [5].

An iterative algorithm for the estimation of non-negative

parameters was proposed by Hoyer [9]. The algorithm is based

on non-negative matrix factorization (NMF) [10], which was

utilized in sound separation by Smaragdis and Brown in [7],

and by Virtanen in [8]. The algorithm enables the use of further

restrictions such as temporal continuity of the sources, as was

proposed by Virtanen [8].
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1.2. Improvements in the proposed method
In the case of audio signals the most obvious choice for the

observation matrix is a time-frequency magnitude spectro-

gram, so that basis functions are magnitude spectra of sources.

If the basic signal model (1) is used, the sources will have a

fixed spectrum over time and only the gain is time-varying.

This basic approach has already been used in some ICA, ISA,

and sparse coding systems [3, 4, 6, 7, 8].

The basic approach has at least two major shortcomings.

First, the assumption of fixed spectra over time is unrealistic

for natural sound sources. Secondly, the model fitting criterion,

e.g. the sum of squared elements of the reconstruction error

( ), emphasizes very different things than the

human sound perception.

In this paper some methods are proposed for solving these

problems at least partially. Firstly, in the proposed source

model the temporal characteristics can be modeled more accu-

rately by using a time-frequency spectrogram for each source.

As explained in Section 2, the source model can be formulated

as a convolution between an onset vector and a source spectro-

gram, thus the name convolutive sparse coding. Secondly, the

loudness perception of human auditory system is modeled by

using compression, as explained in Section 3.

In multi-channel blind source separation, algorithms which

separate delayed and convolved sources have been presented in

several papers, e.g. by Lee et al. [11] and by Smaragdis [12].

Despite of the convolutive source model, the multi-channel

separation algorithms do not have much common with the pro-

posed algorithm.

2.  SOURCE MODEL

The input signal is represented using the magnitude spec-

trogram, which is calculated as follows: at first, the time-

domain input signal is divided into frames and windowed.

A fixed 40 ms Hamming window is used with 50% overlap

between frames. Second, each frame is transformed into fre-

quency domain by taking the discrete Fourier transform (DFT).

The length of the DFT is equal to the window size. Only posi-

tive frequencies are retained. Phases are discarded by taking

the magnitude of the DFT spectra to result spectrogram xf,t,

where f is the discrete frequency index and t is the frame index.

Vector is used to denote all the magni-

tudes of channel f.
The proposed source model was originally designed for

repetitive transient sources. However, it turns out that the

model is also capable for representing sustained sounds. The

model is explained from the transient point of view, and suita-

bility for other sounds is explained in Section 2.1.

Let us assume that sources are short in duration and that

they occur repeatedly so that the magnitude spectrogram is

similar for each occurrence of a source, only the gain is vary-

ing. Two-dimensional magnitude spectrogram is used

to characterize one event of source n at discrete frequency f,
frames after the onset. varies between 0 and D. Fixed dura-

tion D determines the maximum duration of a single event. In

our simulations durations between 100 and 600 ms were tried,

which should be long enough for e.g. most drum sounds. With

20 ms hop size between frames this corresponds to delays from

D = 5 to D = 30.

Onsets and gains of each event are characterized by

parameters an(t). When a sound sets on, the value is positive,

while before and after onset it should be zero. an(t) also

describes the gain of each event. With this parametrization, the

model for a spectrogram M in which a single event occurs at

frame t0 can be written as

(2)

The model can be written for multiple onsets described by the

non-zero elements of an(t) and all frames t = 1...K:

(3)

Each onset corresponds to an impulse in an(t). The summation

inside the brackets is the definition of the finite-length convolu-

tion. The whole spectrogram, in which N sounds are overlap-

ping, can be written as:

(4)

where denotes the convolution of vectors

 and .

The linear summation of the magnitude spectra has been

assumed in the model. This has been assumed in almost all

data-adaptive source separation systems which operate on dis-

crete Fourier transform (DFT) spectra [3, 4, 7, 8]. Theoretically

the assumption is not exactly valid for magnitude spectra, since

only the time-domain signals and complex DFT spectra sum

exactly linearly. However, phase information has to be dis-

carded since the phase spectrum of only a small minority of

sounds remains fixed. In some cases it is better justified to

assume that the power spectra of sounds sum linearly, but in

practise linear summation of magnitude spectra seems to work

better.

2.1. Non-transient sources
It turns out that the proposed model suits well also for

some other sound types than transients. For example, a har-

monic sound with fixed spectrum H(f) can be represented by

which equals H(f) at all delays = 0...D, and by an(t)
which has impulses at interval of D+1. In practise the impulses

may have also smaller interval. A sound with vibrato is pre-

sented with an(t) which has impulses at the rate of the vibrato

and which contains one period of the vibrato. When

the parameters are estimated by fitting the model to the

observed signal the impulses may not be exact.

The convolutive model is also a way of adding dependency

between frames, which should increase the robustness of esti-

mation. It can be noted that by setting the maximum delay D to

zero the model is equal to (1).

3. LOUDNESS PERCEPTION

Computationally it is convenient to estimate the parameters
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by minimizing the squared error between the observed magni-

tude spectrum and the model. However, the use of the squared

error pays attention to very different things than the human

auditory system, which is able to perceive very low-amplitude

sounds. The large dynamic range of the human auditory system

is mainly caused by the non-linear response of the auditory

cells, which can be modeled as a compression of the input sig-

nal separately at each auditory channel.

In this system the compression is modeled by calculating a

weight for each frequency bin in each frame. The weights are

selected so that the sum of squared magnitudes is equal to the

estimated loudness, since the separation algorithm uses the

squared error criterion to fit the model to the data. This way the

“quantitative significance” corresponds to the “perceptual sig-

nificance.”

Usually the loudness of one frame is modeled by com-

pressing the excitation using perceptually motivated critical

bandwidth [13] and frequency scale 1/Bark [14], and integrat-

ing over frequency. Thus, the loudness can be estimated indi-

vidually for each critical band. The loudness model of the

system is adopted from the loudness models of Moore et

al. [15] and Zwicker and Fastl [14]. In our system, 24 separate

bands are spaced uniformly on Bark scale, and denoted by dis-

joint sets Fb, b = 1...24 . The fixed response of the outer and

middle ear is taken into account by multiplying each bin of

spectrum by corresponding response.

In this paper term loudness index is used for the loudness

estimate in a frame within a critical band. The loudness index

in frame t in critical band b is denoted by Lb,t, which is given as

(5)

where hb is the fixed response of the outer and middle ear

within band b, is a fixed scalar with value 0.23 and is the

threshold of hearing on band b, also fixed. In practise is not

known, so it can be estimated from the input signal e.g. by cal-

culating the average level of the signal, and scaling

down 30 dB. The separation algorithm is noncausal so this is

not a problem.

For each critical band in each frame, coefficient gb,t is

assigned, which mimics the loudness perception: the coeffi-

cients are selected so that the error criterion, the scaled sum of

squared magnitudes equals the estimated loudness:

(6)

from which gb,t can be solved as

(7)

To simplify the notation, let us use weight wf,t for each fre-

quency index: , . Further, let us denote

the weights by diagonal matrices Wf:

, f = 1 ... F (8)

The compressed spectrogram can be expressed as

(9)

In the separation it is simpler to use the original spectra and

to store the weights. Therefore, the compressed spectra do not

have to be calculated.

It was found out that very small threshold of hearing will

cause problems in the optimization algorithm if there are low-

amplitude sections in the input signal. Choosing thresholds

which are larger than the actual threshold of hearing will

increase the robustness of the estimation algorithm.

4.  PARAMETER ESTIMATION

The estimation of the parameters is done by fitting the

source model to the observed spectrogram xf,t. Squared error

criterion weighted by Wf is used to measure the goodness of

the fit. The cost function for the reconstruction error crec is the

sum across all frequencies and can be written as

(10)

where is used to refer to the parameter set ,

, .
The number of events is minimized by applying the sparse

coding scheme for vectors an. The sparseness of an is measured

as a sum of cost function q over all the elements:

(11)

Olshausen and Field used in [5]. In

this paper cost term is used, which has been earlier

used by e.g. Hoyer [9] and Virtanen [8]. The numerical range

of an has to be fixed e.g. to unity norm, because otherwise the

measure is minimized by decreasing an and increasing .

Instead of fixing the norm of an, the cost function is modified

to take into account the scale, so that the cost for N sources

becomes:

, (12)

where is the L1-norm and

 is the standard L2-norm.

The overall cost function is the weighted sum of the recon-

struction error cost and the sparseness cost:

(13)

where and are the weights, respectively. In our

simulation experiments it turned out that the sparseness cost

should have a very low cost compared to the reconstruction

error term. Depending on the input signal, the optimal range of

the sparseness term varies approximately between zero and one

fourth of the reconstruction error term.

The optimization algorithm is an iterative algorithm, in

which the magnitude spectrograms are updated using the mul-

tiplicative step [10], and the onset vectors using the steepest

descent.

4.1. Magnitude spectrograms
For given onset vectors a1...aN, sn,f can be updated using
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the following procedure. At first, the convolution is expressed

as a multiplication by matrix. Convolution matrix An is a

matrix formed from vector an, so that the inner product with

vector sn,f is the convolution of the vectors:

(14)

An is a Toepliz matrix which has the elements of an on

diagonals. Matrices An are formed from an, and the cost func-

tion for the reconstruction error of channel f is written as:

(15)

and further

(16)

by using , .

From this form there are several alternative possibilities for

the update of non-negative sf. For example, one can solve glo-

bally optimal non-negative sf by the active-set method [16], or

use iterative methods, such as projected steepest descent.

In our simulations the fastest convergence with relatively

low computational cost was achieved with the multiplicative

step proposed by Lee and Seung [10]. The at pth iteration,

updated  for given , A and Wf is given by

(17)

where .* and ./ are element-wise multiplication and division,

respectively.

4.2. Onset vectors
The gradient of the cost function with respect to an is

needed in the optimization algorithm. Let us start by writing

the cost of the reconstruction error at frequency f in frame t by:

(18)

Let us denote the weighted error in frame t by

(19)

The derivative of the cost (18) with respect to an(ti) is given by:

(20)

The derivative of the sum of costs in frames t = 0 ... T is given

by:

(21)

and the sum across all frequencies:

(22)

The gradient of the sparseness cost (12) is given as

(23)

The total gradient is the weighted sum of the reconstruc-

tion cost gradient and the sparseness cost gradient:

(24)

4.3. Iterative algorithm
Input and pre-processing:
The magnitudes xf,t and weights wf,t are calculated. The

number of sources N is set by hand. N should be equal to the

number of clearly distinguishable instruments. For a drum

sequence, for example, one might use N = 3 for a pattern which

consists of bass, snare and hi-hat. If the spectrum of one source

varies lot, for example because of accentuation, one may have

to use more than one component per source. It has to be noted

that the model consideres the different fundamental frequen-

cies of each instrument as separate sources.

Initialization:
Initialize a1...aN and with the absolute values of

Gaussian noise.

Iteration:
1. Update  using the multiplicative step (17).

2. Calculate

3. Update . Set the negative elements of

an to zero.  is the step size which is adaptively varied.

4. Evaluate the cost function.

5. Repeat the steps 1..4 until the value of the cost function

does not change. In practise this is done by keeping track of

iterations steps for which the decrease of the cost function has

been smaller than a small threshold. Iteration is stopped when

the decrease has been smaller during a certain number of itera-

tions.

For a 10-second input signal the algorithm takes a couple

of hundred iterations to converge, which takes a couple of min-

utes on a regular PC when implemented in Matlab.

5.  SYNTHESIS

In synthesis, the convolutions are evaluated to get frame-

wise magnitudes for each

source. To get complex spectrum, phases are obtained from the

phase spectrogram of the original mixture signal. Time-domain

signal is obtained by inverse discrete Fourier transform and

overlap-add. This procedure was found to produce best quality

especially for drum signals, for example compared to phase

generation method proposed by Griffin and Lim [17]. The use

of original phases allows the synthesis of sharp attacks at accu-

racy which would otherwise be impossible with large window

sizes.

6.  SIMULATION EXPERIMENTS

The objective of the algorithm is to extract sound sources

which are perceptually close to the originals before mixing.

Quantitative evaluation of the perceptual separation quality is

difficult. It can be measured either by listening tests or compu-
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tational procedures which compare the ideal source signals to

separated signals. Basically in both cases the source signals

before mixing are required. In practise this will limit us to syn-

thesized test signals.

6.1. Mixture of two harmonic sounds
Systematic evaluation and comparison to other separation

algorithms was performed with mixtures of harmonic sounds.

200 two-note mixtures of harmonic sounds were used in the

systematic evaluation. To generate a test signal, two samples

were randomly drawn from a database which consists of 26

harmonic instruments of different fundamental frequencies,

850 samples in total. The longer one of the samples was trun-

cated so that the lengths of the samples were equal. To get mix-

ing conditions which correspond more to real situations, the

second sample was scaled to 0 dB, and uniformly distributed

random power between -10 and 0 dB was used for the first

sample.

Mixture signal was generated so that the first sample sets

on at the beginning of the mixture signal and the second one

sets on at the half of the duration of the first sample. Using this

procedure, the first third of the mixture signal contains only the

beginning of the first sample, the second third contains the end

of the first sample and the beginning of the second sample

overlapping, and the last third contains the end of the second

sample. An example of a mixture signal is illustrated in Fig. 1.

Each mixture signal was separated into two sources using

the proposed algorithm. For comparison, also earlier published

separation algorithms based on ISA [3], NMF [7, 10] and

sparse coding with temporal continuity [8] were tested. The

algorithms were implented using the references. In ISA, Fas-

tICA algorithm [18] was used to obtain the independent com-

ponents. Casey and Westner [3] proposed the usage of several

components per source to overcome the limitation of the basic

source model of ISA. Therefore, the ISA algorithm was tested

also with more than two components. For NMF the Euclidean

distance objective was used, since it is similar to that used in

the proposed method and sparse coding. Since the proposed

weighting method can be used also for NMF and sparse cod-

ing, they were tested with and without weighting.

Clustering the components to sources is a difficult task. In

our simulations the objective was to compare sepation algo-

rithms, so the clustering was avoided by using the original

sources as a reference, comparing to which an ideal association

could be obtained. Also with other algorithms the separated

signals were associated to original sources by using grouping

which minimized the residual energy of a source.

The perceptual audio quality measure (PAQM, [19]) was

calculated between the separated and original signals. The

measure was calculated for three different signal sections: term

‘whole’ is used to refer to the whole duration of the mixture

signal, ‘clean’ is used to refer to signal part in which the target

source is active and the interfering sound inactive, and ‘over-

lap’ refers to section where both sources are active. The sec-

tions are illustrated in Fig. 1.

The obtained measures are illustrated in Table 1. For the

overlapping section, the proposed method produces the best

quality. However, for the clean section the weighted sparse

coding and weighted NMF perform better. For the whole signal

the weighted sparse coding produces the best results, even

though the difference to the proposed method is very small.

Without weighting the performance of NMF is almost identical

to that of sparse coding, which suggests that the use of sparse-

ness and temporal continuity objectives as proposed by

Virtanen [8] are not effective at least in this simple task. It is

interesting to see that the performance of unweighted NMF and

sparse coding are almost identical, even though they are based

on very different optimization algorithms.

The quality of ISA is increased by adding more compo-

nents per source, so that with 40 components the performance

is comparable with that of the proposed method. However, the

original sources were used as a reference for the clustering. In

practise it will be difficult to get as good results with multiple

components per source.

Informal listening test showed that the perceptual quality

of synthesized sources is relatively high, and correlate well

with the PAQM.

6.2. Discussion
In the proposed method the number of sources has to be set

by hand. Currently there is no way for the reliable estimation

of the number of sources. In ICA the number of components

can be selected e.g. by using a threshold for the singular values

of the observation matrix. This approach has been used by

Casey and Westner [3]. However, the source model presented

in this paper is more complex and there is no straightforward

Figure 1: An example of a mixture signal used in the simula-
tions, flute with vibrato and trombone. The quality of the sep-
arated signals are estimated on signal sections ‘clean’,
‘overlap’, and ‘silence’ which are illustrated for both sources
in the figure.

clean overlap

overlap clean

source 1

source 2

Table 1: Perceptual audio quality measures (log of average
noise disturbance) of separated components on four signal
sections. The smaller the measure, the better the quality.

algorithm clean overlap whole

ISA (2 components) -0.93 -1.07 -1.40

ISA (6 components) -1.07 -1.29 -1.57

ISA (40 components) -1.15 -1.45 -1.69

NMF -1.09 -1.29 -1.58

weighted NMF -1.15 -1.31 -1.62

sparse coding -1.09 -1.29 -1.59

weighted sparse coding -1.19 -1.41 -1.69

proposed method -1.12 -1.47 -1.68



way for the estimation of the number of sources.

It is possible that the optimization algorithm does not reach

the global optimum, but is stuck in a local minimum. The result

also depends somewhat on the initialization. This is typical for

steepest-descent algorithms in general. For optimization prob-

lems which are as complex as the one presented in this paper, it

is in practise not possible to design an algorithm which is guar-

anteed to reach the global optimum.

If one source is dominating, it is possible that the algorithm

assigns more than one component for that source. To some

degree it is possible to avoid this by using more components

than sources, and clustering the components to sources, as has

been suggested e.g. by Casey and Westner [3] and Virtanen [8].

Additionally to the separation of harmonic instruments, the

proposed method works reasonably well e.g. with drum pat-

terns. If the algorithm is able to converge to real sources, the

perceptual quality of synthesized signals is high. If the com-

plexity of the input signal is increased, the quality of the sepa-

ration decreases gradually.

Most of the pitched instrument samples that were used in

the simulation experiments can be represented rather well with

the standard linear model used in sparse coding. Only the sam-

ples with heavy vibrato actually gain from using the convolu-

tive model. The proposed perceptual weighting was found to

be very effective, also with other models and algorithms e.g.

non-negative matrix factorization and non-negative sparse cod-

ing.

The separation algorithm was also tested using polyphonic

music signals. Some demonstration signals are available at

http://www.cs.tut.fi/~tuomasv/demopage.html.

7.  CONCLUSIONS

A data-driven algorithm for the separation sound sources

has been proposed. The proposed source model allows

separation of time-varying sources, for example repetitive

short-duration transients and harmonic sounds with vibrato.

The proposed separation algorithm is able separate sources

from real-world signals, for example mixtures of harmonic

sounds and drum patterns. Simulation experiments indicate

that the proposed methods enables higher perceptual quality of

the separated components than existing algorithms. Especially

the use of perceptually motivated weights increases the quality.
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