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Abstract

In this paper we develop a physiologically motivated model of
peripheral auditory processing and evaluate how the different pro-
cessing steps influence automatic speech recognition in noise. The
model features large dynamic compression (>60 dB) and a realistic
sensory cell model. The compression range was well matched to the
limited dynamic range of the sensory cells and the model yielded
surprisingly high recognition scores. We also developed a com-
putationally efficient simplified model of auditory processing and
found that a model of adaptation could improve recognition accu-
racy. Adaptation is a basic principle of neuronal processing, which
accentuates signal onsets. Applying this adaptation model to mel-
frequency cepstral coefficient (MFCC) feature extraction enhanced
recognition accuracy in noise (AURORA 2 task, averaged recog-
nition scores) from 56.4% to 75.6% (clean training condition), a
relative improvement of 41% in word error rate. Adaptation outper-
formed RASTA processing by more than 10%, which corresponds
to a relative improvement of 31%.

1. Introduction

Auditory modeling has previously been demonstrated to improve
automatic speech recognition (ASR) in noise [5, 6, 12, 15]. In this
work, we created a model of peripheral auditory sound processing,
interfaced it to a hidden Markov model (HMM) speech recognizer,
and evaluated the impact of every processing step on ASR. We have
focused on the task of ASR in noise. This choice of task is moti-
vated by the practical importance of improving ASR in noise and by
the comparatively excellent performance of human hearing in noisy
conditions. Compared to previous work, we more closely model
cochlear physiology and our model provides much larger dynamic
compression.

Because of the computational complexity of a detailed audi-
tory model, as well as a desire to better understand the effect of
different processing principles on ASR performance, we also inves-
tigated a simplified model, and experimented with combining one
part we found to be significant — adaptation — with conventional
mel-frequency cepstral coefficient (MFCC) feature extraction.

2. Detailed inner ear model
2.1. Basilar membrane model

In contrast to typical speech recognition front-ends, which rely on
a Fast Fourier Transform (FFT), the frequency decomposition per-
formed in the human inner ear resembles cascaded filters. This be-
comes evident when the hydrodynamics of the inner ear are trans-
formed into the equivalent electrical circuit (Fig. 1). Motions of the
stapes are propagated in the inner ear in the form of a travelling
wave on the basilar membrane (BM). High frequency signals reach
their vibration maximum close to the basal end of the inner ear,
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whereas low frequency stimuli travel further apically. That way,
the travelling wave causes a spectral decomposition of sound (see
Fig.2). We modeled BM vibrations with a computationally efficient
wave digital filter model consisting of 100 sections [13]. The re-
sponse of this model is plotted in Fig. 2 (panel b, solid line).
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Figure 1: Electrical equivalent circuit of inner ear hydrodynam-
ics (v-1/p-U analogy). Each section i takes the form of a second-
order resonator (mij, Ci, R;), which are coupled by fluid masses
m;. Vibrations are injected by the middle ear vibration (velocity v,
source impedance Zme) and the transmission line is closed by the
impedance of the helicotrema (mu ||Rx). The electrical circuit rep-
resentation of the nonlinear “amplification” and compression stage
is shown only for one section. The first stage is driven by the BM
displacement derived from the velocity output v; of the transmission
line model. Following stages are driven by the displacement of the
previous stage. The compressed output is available at the last stage
(xai). The frequency map of the model was adjusted according to
Greenwood’s [2] map for the human inner ear.

We know that inner ear processing is highly nonlinear. Low-
level sounds are mechanically amplified, probably by the outer hair
cells. This active, nonlinear amplification stage both boosts the vi-
bration amplitudes and significantly sharpens the travelling wave
at low levels. The amplification saturates at medium to high lev-
els, causing compression of the dynamic range. Measurements
have shown that the maximum amplification is more than thousand-
fold (> 60dB, [10]), however, it is still unknown how the inner ear
reaches this extremely high amplification without becoming unsta-
ble. To achieve stable “amplification” and compression, we im-
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plemented resonators with time-variable quality-factors (Q-values).
This technique has previously been used within the hydrodynamic
model to achieve BM nonlinearity (e.g. [13, 12]). However, to ob-
tain the high amplification found in nature (> 60 dB) Q-values as
high as 1000 would be required. A resonator with such a high Q-
value has an extremely narrow bandwidth and causes excessively
long ringing. Here, the amplification stage was realized by adding
multiple time-variable second-order resonators at the outputs of the
cochlear filter bank (compare Fig. 1, a similar implementation was
proposed by [9]). Quality factors were adjusted at every sample
depending on the instantaneous displacement of each resonator,
using a Boltzmann function similar to the sensitivity function of
the OHCs. By cascading four resonator stages and modulating
their quality factors, we realized large amplification and compres-
sion (modulating Q-factors between ten and one achieves maximum
compression of 80dB) together with approximately correct filter
shapes. In the high frequency range of the inner ear, larger am-
plification is required to model physiological data than in the low-
frequency range. Note that the resonators amplify only the vibration
amplitude, not the energy of the vibration, as it is the case in the liv-
ing cochlea. For the recognition task chosen in this paper (signals
had telephone bandwidth), we modelled the human cochlea only up
to a characteristic frequency of 4 kHz; the high—frequency region
(distance from stapes: 0 — 12 mm) was truncated. To keep process-
ing times at a minimum, we set the sampling rate to 8 kHz for the
whole model (no over-sampling).

The excitation pattern of the BM along the whole length of the
cochlea for a tone complex (pure tones with frequencies 500 Hz,
1kHz and 2kHz; levels as indicated in the legend) is shown in
Fig. 2a. The cochlea map roughly corresponds to a logarithmic fre-
quency scale, with the basal part reacting predominantly to high-
frequency signals. Accordingly, the 2 kHz tone causes activity at a
distance of approximately 15 mm (measured from the stapes), the
so-called characteristic location (CL) of that frequency. At low
levels (Fig.2a, 20dB), filter shapes are narrow and almost sym-
metrical. The amplitudes at the most sensitive location are greatly
amplified, so that even faint sounds cause excitation above thresh-
old (which is around 1 nm, [10]). At high signal levels, responses
share the characteristics of a passive travelling-wave with a gradual
build-up and a sharp roll-off after the relatively broad maximum is
reached (80dB line). For increasing intensities, the excitation pat-
tern grows highly asymmetrical, in accordance with the well known
phenomenon of upper spread of masking. At CL, the growth func-
tion (the ratio of BM displacement to signal amplitude) is greatly
compressed. Compression varies with location along the cochlea;
it is largest in the most basal part. Here, the growth function fol-
lows approximately a cube root law at medium signal levels. At
more apical locations, growth functions are almost linear (compare
responses to 2 kHz tone, CL 15 mm, and 500 Hz tone, CL 25 mm).
Despite the huge (nonlinear) compression, distortions are surpris-
ingly low (visible only around 17 mm in the 60 dB trace of 2a).

2.2. Sensory cell model

Basilar membrane vibrations drive the hair bundles (HB) of the
sensory cells (the inner hair cells, IHCs), by fluid motion. As a
first approximation, fluid friction and HB stiffness form a first-order
high-pass filter, i.e. HB displacement is proportional to BM veloc-
ity at low frequencies and to BM displacement at high frequencies.
The corner frequency is taken to decrease (2000 — 200 Hz) along the
length of the cochlea as a result of increasing length and decreasing
stiffness of the bundles. This high-pass filter provides some addi-
tional sharpening of the shallow low-frequency slope of the tuning
curves. Figure 3a shows the basilar membrane vibration for a 70 dB
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Figure 2: Excitation pattern (RMS) of the basilar membrane for
a tone complex (pure tones with frequencies of 0.5, 1 and 2 kHz)
at various sound levels as indicated in the legend (modeled human
cochlea). Panel a (top): Detailed model. Levels in the legend refer
to the level of each single tone. Panel b (bottom): Displacement of
the simplified basilar membrane model (BM, solid line) and with
sharpened responses by three additional high-pass filters (BM2,
dashed line, compare section 6). Note that our model covered only
frequencies up to 4 kHz; it therefore started at a distance of 12 mm
measured from the stapes.

200 Hz tone burst at its characteristic location (29 mm); the vibra-
tion amplitude is about 50 nm. Notice that the BM vibration is de-
layed relative to the tone onset due to the traveling time of the wave
in the inner ear. Hair bundle displacement is plotted in Fig. 3b, its
amplitude is about 3 dB lower than that of the BM. Upon deflection
of the HB, ion channels at its tip open. The open probability of
the mechano-electrical transduction channels follow a second-order
Boltzmann function [8]. This function resembles a half-wave rec-
tification; channels open only for deflections in excitatory direction
(compare Fig. 3c). For displacements in the opposite direction, the
activity (open probability) of the transduction channels is depressed
slightly from their activity at rest. The saturating nonlinearity of the
Boltzmann function deforms the receptor potential significantly and
gives the sensory cells a limited dynamic range of less than 40dB.
Therefore mechanical compression before the transduction is essen-
tial to process sounds with large dynamic ranges. The voltage dif-
ference between the fluid space into which the HBs extrude (scala
media, +90mV), and the membrane potential of the IHCs (V=g,
—45mV at rest), drives a transduction current which depolarizes
the IHC membrane (capacity: 10 pF, conductivity: 60nS). These
electrical properties of the membrane are modeled as a first order
low-pass filter with a corner frequency of approximately 1 kHz.

2.3. Synaptic mechanisms

Depolarization of the membrane activates voltage dependent cal-
cium channels located close to the cell’s synaptic terminals and



Ca?T-ions enter the cell. Ca2T-channel activation also follows a
Boltzmann function. Elevated Ca?*-levels cause fusion of synaptic
vesicles with the cell membrane. The neurotransmitter contained in
the vesicles diffuses across the synaptic cleft (not modeled), binds to
the receptors in the postsynaptic membrane, causes the postsynaptic
membrane to depolarize, and a nerve action potential is propagated
along the auditory nerve fiber towards the brain. Neurotransmitter
release is dominated by a so-called readily releasable pool (RRP) of
vesicles, which are located in the synaptic region closely to the cell
membrane. A large stimulus causes fusion of many vesicles, deplet-
ing the RRP. Due to the depletion, the transmitter concentration in
the synaptic cleft (TR) and therefore also spiking probability of the
auditory nerve is reduced in the following few tens of milliseconds,
an effect known as adaptation. We modeled RRP refill according to
recent measurements [7] with a single time constant of 67 ms. It has
to be stated that this one-pool model only partly approximates phys-
iological data [16]; more precise models still have to be developed.
The transmitter rapidly degrades in the synaptic cleft (time constant
~ 0.1 ms) causing TR to decrease (see Fig. 3d). The generation of
a nerve action potential depends on TR and on the refractoriness of
the auditory nerve fiber (not modeled in this paper). TR exhibits
a significant difference compared to the preceding steps: responses
are emphasized at signal onset and decay thereafter. However, the
decay is not complete and steady state signals do elicit tonic activa-
tion of the auditory nerve. If we consider only the signal envelopes
in Fig. 3, TR resembles the sum of the receptor potential Vr with a
high-pass filtered version of V.

3. Interfacing to the speech recognizer

The outputs of each section of the model — basilar membrane dis-
placement, hair-bundle displacement, receptor potential or transmit-
ter concentration in the synaptic cleft — provide frequency-selective
features at the full sampling rate of the model. We temporally in-
tegrated the root-mean-square energy of each frequency-selective
section using a Hanning window (25 ms width) which we advanced
in steps of 10 ms. We then spectrally integrated using a second Han-
ning window (width covering 17.5 cochlear sections, advanced in
steps of 7 sections) to reduce the frequency resolution from 100
channels to 12 feature vectors. This procedure resulted in a signal
representation which was more appropriate for the speech recogni-
tion back end.

Since the diagonal-covariance Gaussian mixture models we
used for ASR acoustic modeling have a limited ability to model
correlations between different features in the feature vector, we ap-
plied a Karhunen-Loeve Transform (KLT) to decorrelate the fea-
tures. (We determined the KLT transform using only the clean train-
ing data.) The KLT is approximated by the more commonly used
discrete-cosine transform (DCT) if certain assumptions are satis-
fied; since we are working with novel features we felt safer using
the KLT. We completed our feature vector by adding delta and delta-
delta features; this can be seen as a way to include temporal context
without introducing strongly correlated features as would happen if
we appended the feature vectors of adjacent frames.

Features are plotted (Fig. 4) for the spoken digits “one three”.
The spectral and especially the temporal resolution is severely
blurred because of the data reduction. Whereas BM and HB dis-
placement show only minor differences from each other, the recep-
tor potential Vx is significally altered due to the saturating nonlin-
earity of the mechano-electrical transduction (compare also Fig 3¢
and section 2.2). The transmitter concentration in the synaptic cleft
TR strongly emphasizes onsets of sounds.

4. Recognition task and recognizer back end

We used the Aurora 2 speech recognition task (connected digits
in noise, bandpass-filtered to telephone bandwidth) defined in [4].
This task presents the recognizer with a variety of signal-to-noise
ratios (SNR) and noise types. We obtained results on this task
using a hidden Markov model (HMM) back end used by many
other researchers for this task. The back end, based on Cam-
bridge’s HTK recognizer, uses word-level digit models with 16
states per word. Mixtures of diagonal-covariance Gaussians are
used for modeling each state. We used the “complex’ version of the
back end (http://icslp2002.colorado.edu/special sessions/aurora/) in
which the number of Gaussians per state is increased to twenty.

Aurora 2 has two training sets: a clean training set with
no added noise and a multi-condition training set with vari-
ous noises added at various SNRs. There are three test sets:
in test set A the noises are the same as in the multicondi-
tion training, in test set B the noises are different, and in test
C the noises are different and also a different bandpass filter
is used. We report our performance separately for each train-
ing condition, as percentage word recognition accuracy averaged
over the three test sets and five SNR conditions between 20
and 0 dB. (We will place a more detailed performance break-
down online at http://www.icsi.berkeley.edu/Speech/papers/sapa04-
hemmert.html. We may use the same location for updates or other
additional information about our work.)

5. Recognition results with detailed inner ear
model

Averaged recognition scores using the features derived from the in-
ner ear are shown in Table 1. Please note that these scores relate to
performance under noisy conditions; recognition scores for “clean”
conditions were close to 99%. Recognition scores of all features,
except TR, are similar to the results obtained using a MFCC feature
vector (cepstral coefficients C0-C12 along with deltas and delta-
deltas, see Table 3, first column). Given all the nonlinearities of the
detailed inner ear model, the high recognition scores are surprising.
Apparently, compression and nonlinearities were well matched so
that no important information was destroyed. The drop of recog-
nition for TR indicates that significant information was lost at this
stage. It may be that the activation of the Ca*-channels and prob-
ably also the one-pool model for adaptation are not sufficient and
that more sophisticated modeling is required.

Table 1: Recognition accuracy for the detailed model.
| |BM\HB|VR|TR|

clean | 55.20 | 55.47 | 55.68 | 46.26
multi | 85.31 | 85.57 | 87.56 | 80.56

6. Simplified inner ear model

The detailed, physiological model described above is much more
complex than conventional ASR front ends. For this reason, and
to gain insight into the relationship between model properties and
ASR performance, we also performed experiments with a simplified
model.

6.1. Simplified basilar membrane model

The simplified model used the same passive transmission line as
the detailed model. As this provides no amplification, we simply
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Figure 3: Excitation caused by a 200 Hz tone burst (sound pressure: 70 dB peak amplitude, stimulus on—-time: 50-150 ms, detailed model) at
its characteristic location (29 mm). a) BM: displacement of the basilar membrane, b) HB: hair bundle displacement of the sensory cells, c)
Vr: receptor potential, d) TR: normalized transmitter concentration in synaptic cleft.

multiplied the input signals by a factor of 1000 (60dB). To de-
rive speech recognition features, we calculated the logarithm of the
features after the dimensionality reduction described in section 3.
Compared to the detailed inner ear model, the logarithm has the
advantage that there can be no information loss due to saturation.
Speech recognition scores show, however, that the performance of
this model is much worse than the detailed model (BM in Table 2).
As the low-frequency slopes of the linear basilar membrane filter
are much flatter than in the detailed model and physiological data,
we added high-pass filtering at the output of each section, with cor-
ner frequency matched to the corresponding cochlear location’s best
frequency. Using three cascaded first-order high-pass filters, basal
slopes of the excitation patterns were sharpened and close to these
observed at medium levels (60-80 dBspr,, see Fig. 2) of the detailed
model. Recognition accuracy improved greatly (BM2 in Table 2).

6.2. Simplified sensory cell model

In the simplified model, mechano-electrical transduction of the sen-
sory cells (IHCs) was realized with a simple half-wave rectification.
At this stage we also implemented compression with a logarithmic
function (instead of applying the logarithm after the dimensionality
reduction as in section 6.1) because we wanted to realize adaptation
in the logarithmic domain. To avoid negative or zero arguments to
the logarithm, we added a threshold value (1 nm) to the rectified
bundle displacement. We low-pass filtered this signal with a corner
frequency of 1 kHz, which is equivalent to the electrical properties
of the cell’s membrane.

This processing (Vr in Table 2) degraded recognition scores
(presumably because of the half-wave rectification), especially if
training was only performed with clean speech.

6.3. Simplified adaptation

In the simplified model, the effect of adaptation (see section 2.3)
was modeled by summing Vr with two highpass filtered versions of
Vr. The highpass filters were realized as first-order infinite impulse
response filters, with corner frequencies of 2.65Hz and 53 Hz. The
output of the 53 Hz highpass was scaled by a factor of 6. These
parameters were chosen to match physiological measurements of
[16]. In contrast to the drop in performance going from Vx to TR
with the detailed model, this processing scheme greatly improved
clean training set recognition accuracy for the simplified model (TR
in Table 2).

Table 2: Recognition accuracy for the simplified model (f is the
corner frequency of highpass filter in A2).

BM | BM2 | Vr TR

BM2+A2 | BM2+A2
f=2.65Hz f=1Hz
clean | 46.4 | 57.4 | 46.1 | 56.1 65.6 75.0
multi | 846 | 89.7 | 87.4 | 87.1 90.8 91.3

For comparison, we also applied the frame-based adaptation
processing (A2) described in section 7 to the features of our pre-
vious simplified model (BM2), after the integration into 25 ms
frames described in section 3. The results are shown in the final
two columns of Table 2.



A
>
(8]
c
(4]
=}
g
%
Q =
= L
= =
° N
£ g
2
(8]
©
S
©
<
(8]
A
>
(8]
c
(4]
S
o
» Q
=
g %)
E 3
© =
Rt i
(8]
©
o
©
<
(8]

0 200 400 600 800 1000
time (ms)

N
>

> | HB bz
|
4 r o
9 2
5 8 g
@ n
$ 8} 5
B
10 g
12 | . . ! . S
SR ' i j “d]
e
.t | :
jon
" 2
o 6 f o
E 3
& 87 5
10 } 8
[
12 | . S

0 200 400 600 800 1000
time (ms)

Figure 4: Normalized features after spectral and temporal integration for the spoken digits “one three” (detailed model). a) BM: basilar
membrane displacement, b) HB: hair bundle displacement, ¢) Vr: receptor potential, d) TR: transmitter concentration in synaptic cleft. Black

areas indicate high amplitudes.

7. Frame-level adaptation processing with
FFT-based features

Inspired by the performance improvement due to the simplified
adaptation processing, we tested the effect of this processing for
conventional, FFT-based features. In this case the adaptation was
operating at the frame rate (100 Hz) rather than the audio sampling
rate, so we omitted the second (53 Hz) high-pass filter. Thus the
“adapted” features were the sum of the original features and a tem-
porally high-pass filtered version. We will refer to this frame-level
adaptation processing as A2. We applied the adaptation processing
to logarithmic mel-spectra, just prior to the discrete cosine trans-
form in MFCC calculation. After some experimentation with the
high-pass filter corner frequency value we found performance was
improved using a corner frequency of 1 Hz instead of 2.65 Hz. ASR
results are shown in the MFCC+A2 columns of Table 3.

The A2 processing is related to the commonly used RASTA
[3] and cepstral mean subtraction (CMS). The MFCC+RASTA col-
umn shows the effect when RASTA filtering was applied to the
logarithmic mel-spectra instead of A2. MFCC+A2 outperforms
MFCC+RASTA, especially with clean training. For the clean train-
ing condition MFCC+A2 outperforms MFCC+RASTA by more
than 10% in the absolute recognition scores, which corresponds
to a relative improvement of 31%. For the multi-condition train-
ing condition, differences are smaller, but recognition results of
MFCC+A2 are still about 12% better than for MFCC+RASTA. The
MFCC+CMS column shows the effect of cepstral mean subtrac-
tion, with means calculated over entire utterances. MFCC+A2 out-
performs MFCC+CMS with clean training. With multicondition
training, MFCC+CMS is superior; however, the extra delay result-
ing from mean calculation over an entire utterance is unattractive in
some ASR applications.

Table 3: Recognition accuracy for frame based adaptation process-
ing (f is the corner frequency of highpass filter in A2).

MFCC MFCC MFCC | MFCC MFCC

+A2 +A2 | +RASTA || +CMS
f=2.65Hz | f=1Hz
clean | 56.37 68.35 75.55 64.46 69.53
multi | 89.34 90.44 91.04 89.86 92.55

8. Discussion

We have developed a physiologically motivated model of basilar
membrane dynamics and a realistic model of the sensory cells in the
human inner ear which is able to replicate a great amount of phys-
iological and psycho-acoustical data. Due to the limited dynamic
range of the sensory cells (<40dB), dynamic compression of BM
vibrations is essential for sound processing without major informa-
tion loss. Our BM model achieved a dynamic range compression
of more than 60dB and accomplished speech recognition scores
similar to classical MFCC features. The inner ear model features
a natural mel-scaled frequency transformation, whereas with con-
ventional FFT-based feature extraction (MFCC or PLP) a mel- or
Bark-scale is achieved by weighted summing across FFT bins. This
summing reduces the frequency resolution without improving the
temporal resolution of the features. In the human auditory system,
the weaker (absolute) frequency selectivity at higher frequencies is
compensated by a higher temporal resolution. However, we reduced
the temporal resolution of the output of our models when we inte-
grated in time- and frequency domains to achieve 12 features each
10 ms. If we could better exploit the high temporal resolution of the
auditory model, further improvements to speech recognition per-
formance might be possible. Previous work on auditory modeling
has involved the introduction of novel feature extraction techniques,
for example Ghitza’s ensemble interval histogram (EIH) [11] and



Sheikhzadeh and Deng’s inter-peak interval histogram (IPIH). In
some experiments, not included in this paper, we tried IPIH, but we
did not observe a performance improvement.

Auditory models may improve speech recognition, but on the
other hand, speech recognition can also be applied to test auditory
models. In our model, recognition scores are not reduced by the
harsh threshold- and saturating nonlinearities of the sensory cells,
on the contrary, recognition scores even improve slightly. When
the transmitter release is tested, a large drop of recognition scores
is apparent. This step was modeled with a one-pool vesicle model,
which does not correctly reproduce adaptation. We conclude that
the physiological model of transmitter release we used requires im-
provements to satisfy both physiological measurements and high
fidelity information processing requirements.

In an attempt to reduce the high computational requirements
of physiologically motivated models, we also developed a simpli-
fied model, where we replaced dynamic compression by a simple
logarithmic transformation. Table 2 suggests that the shallow high-
frequency slope of a passive basilar membrane model does not pro-
vide features with sufficient frequency selectivity. This problem
was solved by adding additional high pass filters. The ingenious
design of the human auditory system becomes apparent again when
we look at the conversion of vibrations into a receptor potential V.
In the simplified model, this processing involves half-wave rectifi-
cation and low-pass filtering, and it appears from the recognition
scores that this is much better handled by the detailed model with
its nonlinear dynamic compression and its soft rectification using a
second-order Boltzmann function. On the other hand, the simplified
model of adaptation (see section 6.3) improved recognition scores
for the clean training condition. We also tested this scheme on fea-
tures which were already integrated in frequency and time for di-
mensionality reduction (see Table 3). Recognition scores improved
greatly, perhaps because half-wave rectification is not required in
this case, as the RMS-values of BM vibration are processed.

One major goal of our work with auditory models is to iden-
tify processing schemes which improve speech recognition. The
principles underlying these may also be useful in conventional ASR
implementations. When we added adaptation to MFCC process-
ing (computational cost is less than 0.02 MOPS), we found large
improvements of speech recognition accuracy especially with clean
training. Here adaptation outperforms CMS (Table 3). Unfortu-
nately, these improvements do not always translate to the multi-
condition training, where CMS is superior. Adaptation is a funda-
mental principle of sensory- and neuronal processing, which sup-
presses equally distributed information and enhances changes. In
auditory information processing, adaptation in the auditory nerve
accentuates temporal onsets of signals. Maximum recognition ac-
curacy was obtained for a high pass filter corner frequency of 1 Hz
which matches the value used in RASTA. The corresponding time
constant is slightly lower than the adaptation time constant observed
in the auditory nerve. However, adaptation is apparent at all neu-
ronal stages and time constants are thought to increase along the
auditory pathway. This might explain why a lower filter corner fre-
quency appears to be more appropriate in speech recognition exper-
iments.

It is noteworthy that a model of neuronal adaptation outper-
forms RASTA processing. Like adaptation, RASTA enhances tem-
poral changes of signal amplitudes but it is using a high-pass
filter which completely suppresses stationary signal components.
This processing scheme enhances speech recognition in background
noise from 56% (MFCC) to 64% (MFCC+RASTA) in the clean
training condition. However, sometimes stationary-seeming sig-
nals, for example vowels with a long duration, do carry linguis-
tic information which might be destroyed by RASTA. The optimal

temporal filtering for improving ASR performance can depend on
the recognition task [1, 14]. At least for the Aurora task, adaptation
seems to provide a good compromise: in the clean training condi-
tion adaptation outperformed RASTA (31% relative improvement
in word error rate) and reached a recognition score of 75.55%.
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