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Abstract 
In order to map the spectral characteristics of the great variety 
of sounds a musical instrument may produce, different notes 
were performed and sampled in several intensity levels across 
the whole extension of a clarinet. Amplitude and frequency 
time-varying curves of partials were measured by Discrete 
Fourier Transform. A limited set of orthogonal spectral bases 
was derived by Principal Component Analysis techniques. 
These bases defined spectral sub-spaces capable of 
representing all tested sounds, which were validated by 
auditory tests. Sub-spaces involving larger groups of notes 
were used to compare the sounds according to the distance 
metrics of the representation. A clustering algorithm was used 
to infer timbre classes. Preliminary tests with resynthesized 
sounds with normalized pitch showed a clear relation between 
the perceived timbre and the cluster label to which the notes 
were assigned. 

1. Introduction 
Representation of a musical instrument involves the 
estimation of the physical parameters that contribute to the 
perception of pitch, intensity level and timbre of all sounds 
the instrument is capable of producing. Of these attributes, 
timbre poses the greatest challenges to the measurement and 
specification of the parameters involved in its perception, due 
to its inherently multidimensional nature. Intensity and pitch 
time-varying levels can be classified according to soft/loud 
and low/high one-dimensional scales and are, hence, capable 
of being quantitatively expressed by the traditional music-
notation system. On the other hand, timbre is not so easily 
scaled. It is perceived by means of the interaction of a variety 
of static and dynamic properties of sound grouped into a 
complex set of auditory attributes. Due to the 
multidimensionality of this attribute, the identification of the 
contribution of each one of these competitive factors has been 
the main subject of psychoacoustics research on timbre 
perception. 

The introduction of the notion of "similarity rate" of 
hearing judgment responses together with Multidimensional 
Scaling (MDS) techniques allowed the reduction of this 
dimensionality and made it possible to investigate the 
complex structure of this attribute, which motivated the first 
studies on musical timbre upon perceptive data [1] and [2]. In 
one of the most classic studies on musical timbre, Grey [3] 
measured subjective judgment of similarity between pairs of 
timbres from 16 different musical instruments, submitted 
them to an MDS and built a three-dimensional Timbre Space, 
in which multidimensional "timbre values" of different 
instruments were positioned according to their similarity/ 
dissimilarity. Other than mapping geometrically the concept 

of acoustic similarity, that study also showed the capability of 
the method for providing a psychological quantification of a 
relatively complex structure upon quite simple data – 
similarity/dissimilarity responses between pairs of distinct 
timbres. 

More recent studies were able to relate measurable 
physical parameters with the dimensions shared by the timbre 
represented in these spaces, combining quantitative models of 
perceptive relationships with psychophysical explanations of 
the identified parameters [4] and [5]. The possibility of 
establishing correlations between purely perceptive factors 
related to timbre and acoustic measurements extracted 
directly from sound, directed research on musical timbre 
towards more quantitative approaches. A historical review of 
the development of research on musical timbre is found in 
[6]. 

A technique commonly used in research on musical 
timbre is Principal Component Analysis (PCA), which also 
builds multidimensional data representation. However, while 
MDS representation relates built-in variables in data obtained 
from similarity judgment, PCA manipulates the variance of 
measured acoustic data. Recent works applying PCA to time-
varying amplitude and frequency curves of harmonic 
components have produced similar results with similar sets of 
sounds [7], [8], [9], [10], [11], [12] and [13]. 

The above mentioned studies have approached 
comparisons among isolated notes of different musical 
instruments outside any musical context, focusing on the 
perceptive mechanism that discriminates a musical instrument 
from another. Little has been achieved regarding perceptive 
discrimination within the timbre palette produced by a single 
musical instrument, or even along the extent of a single note. 
Focused on the timbre of a single instrument, this study 
investigates methods for representing the variety of sonorities 
produced by one single musical instrument, sharing the same 
questions raised by recent research that investigates the 
contribution of acoustic parameters to the conveyance and 
perception of musical expressiveness.  

2. Timbre set specification 
The purpose of this study is to represent the timbre of a 
musical instrument upon spectral parameters extracted from 
samples of sounds performed on that instrument. An adequate 
set of sounds for such a representation should include as 
many as possible different timbres, performed along the 
instrument entire pitch range. Two major simplifications were 
considered in defining the timbre set used in this study: (i) it 
was limited to the sound palette commonly produced on 
musical instruments in traditional western music 
performance, excluding sonorities produced on the instrument 
on the context of other musical traditions,  as well as those 
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regularly used in contemporary music known as “extended 
techniques” [14]; (ii) in order to facilitate the estimation of 
spectral parameters, only the sustained part of relatively long 
sounds was considered, excluding attack, decay and 
transitions between consecutive notes. Due to dependence of 
timbre on these parts, the second simplification limits the 
investigation to the perception of slow variation of musical 
timbre, which commonly happens along longer notes during a 
musical performance.  

Intentional variations of timbre, together with fluctuations 
of intensity and duration are commonly used by the player, in 
order to convey his or her expressive intentions. Although 
timbre may vary independently from intensity and duration, 
its dependence on intensity is evident. This high level of 
correlation facilitates the sampling of different timbre 
“values” of the same note upon specification of intensity 
levels. Thus, four different timbres were sampled for each 
note by asking the player to perform each note in four 
different intensity levels, with minimal variation. Four levels 
were defined: pianissimo (pp), mezzo-piano (mp), mezzo-forte 
(mf) and fortissimo (ff). The performer was asked to establish 
the lowest and highest level limits as softer and louder as 
possible, respectively, within the range of commonly used 
timbres on western classical music. Intermediate levels were 
to be defined by comparison with the lowest and highest 
limits. Samples were obtained through high quality recordings 
of all notes of the two lowest registers of a B flat clarinet, 
ranging from D3 (147 Hz) to A5 (880 Hz), played at the four 
levels of intensity defined above, with an average duration of 
3 seconds. 

3. Principal Component spectral bases 

3.1. Spectral parameter estimation 

The amplitude curves of the harmonic components were 
estimated according to McAulay and Quatieri’s method, 
which searches for maximum amplitude values (“peak 
detection”) of a Fourier Transform and establishes a 
correspondence between the closest peak values in adjacent 
analysis frames (“peak continuation”), associating these 
values to instantaneous frequency and amplitude values of 
harmonic components [15, 16]. In order to reduce the 
complexity of the data, some simplifications were considered: 
(i) all sampled sounds can be represented by a weighted sum 
of sinusoids, whose amplitude and frequency values do not 
vary abruptly in the course of duration; (ii) components 
whose intensity were more than 60 dB below the maximum 
level were discarded; (iii) amplitude curves were smoothed 
by a low pass filter with cut-off frequency of 10 Hz. 

3.2. Principal Component Analysis   

The high correlation of spectral parameters, presented in both 
the frequency and time domains, which is a common 
characteristic of spectral distribution of sounds of musical 
instruments, allowed an efficient data reduction using 
Principal Component Analysis (PCA) [17]. Applied to a set of 
multidimensional variables, PCA calculates an orthogonal 
basis determined by the directions of maximum variance of 
the analyzed data. The projections of the original data on this 
basis, denominated principal components (PCs), follow 
trajectories that accumulate the maximum variance of the data 

in a decreasing order. This allows an approximate 
representation of the data, using only a reduced number of 
dimensions. Given the estimated covariance matrix of the 
analyzed data [ ]nxxxxX ,...,, 321= : 
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the orthogonal basis U is determined by singular value 
decomposition (SVD): 

t
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The projection of X in PCs is given by Y = Ut X  and can be 
further recovered by X = U Y. The original spectra can be 
reconstructed by adding the basis, properly weighted by the 
amplitudes of the corresponding trajectories. 

3.3. Spectral basis of a single note 

At first, a set of orthogonal spectral bases associated to 
amplitude envelopes was calculated for each sound. These 
envelopes combined with the corresponding basis, were able 
to render the sound with great precision. After that, spectral 
sub-spaces were built to represent the spectral distributions of 
all possible sounds of a single note by calculating a spectral 
basis using as input data the concatenation of the four samples 
of this note, pp, mp, mf and ff, as defined in Section 2. 
Samples were normalized in amplitude and duration, with 75 
time frames each, equivalent to 870 ms, taken from the center 
of the note. Previous studies showed that the first 5 PCs were 
capable of reconstructing all the sounds without any 
perceptible loss of characteristics of timbre [18]. 

Table 1 shows the cumulative variance explained by the 
first five Principal Components in each individual execution 
of the note Bb3 (233 Hz) compared to the variance obtained 
when PCA is applied to all executions of this note. The first 
component explains, alone, no less than 74% of the total 
variance for every isolated sound, but only 68.7% if PCA is 
calculated for all four sounds. A reconstruction of 99% is 
achieved with 3 PCs for every isolated sound, but 5 PC are 
needed with the PCA applied to all four sounds.  

PC pp mp mf ff pp-mp-mf- ff 
1 87.3 96.3 76.1 74.4 68.7 
2 99.8 99.7 96.2 97.2 89.5 
3 99.9 99.9 99.2 98.6 94.4 
4 100.0 99.9 99.6 99.5 97.2 
5 100.0 100.0 99.8 99.7 99.0 

Table 1: Cumulated Variance of the first 5 PCs of Bb3 
(233 Hz) in four intensity levels (columns 2 to 5) and 

variance of PCA applied to all executions (last column). 

3.4. Spectral basis of a group of four notes 

A set of spectral bases of a group of notes was then calculated 
by applying PCA to the concatenation of the sounds of each 
note. Four contiguous notes were chosen due to the perceptive 
similarity of their timbres: A3 (220 Hz), Bb3 (233 Hz), B3 
(247 Hz) and C4 (262 Hz). The spectral basis thus obtained 
constitutes a timbre space for these four notes, where each 



sound occupies a unique position, according to its spectral 
configuration. Figure 1 compares the 1st, 3rd, 5th and 7th 
harmonics of the original Bb3 with its resynthesized version 
using the spectral sub-space thus calculated. Comparison 
between the amplitude curves of the harmonics of the original 
sounds and their reconstructions generated from this spectral 
sub-space shows that the model is effective in the 
representation of harmonics with larger amplitude. Also, in 
this case, auditory tests showed no loss of perceptible 
characteristics of timbre [18].  

 

Figure 1: 1st, 3rd, 5th and 7th harmonics of the original 
Bb3 ff (top) and its resynthesized version (bottom) 

using the spectral sub-space of the notes A3 (220 Hz), 
Bb3 (233 Hz), B3 (247 Hz) and C4 (262 Hz) 

calculated with 5 principal components. 

PCs 
 

A3 – C4 
(4 notes) 

Low Register 
D3 – Ab4 
 (19 notes) 

Low+Mid Registers 
D3 – A5 

 (32 notes) 
1 56.4 59.2 53.4 
2 80.4 77.9 71.8 
3 90.3 87.2 84.1 
4 94.2 92.8 89.7 
5 96.9 96.7 94.2 

Table 2: Cumulated Variance for different PCA bases: 
A3 (220 Hz) – C4 (262 Hz); D3 (147 Hz) – Ab4 (415 

Hz); D3 (147 Hz) – A5 (880 Hz). 

Sets of spectral bases for larger groups of notes in all four 
intensity levels were then calculated, in order to represent a 
larger variety of spectral distributions. As expected, as the 
number of notes involved increases, the less efficient the 

representation becomes. Table 2 shows the cumulated 
variance of PCA bases calculated for three different groups of 
notes: (1) the four above mentioned contiguous notes (A3 - 
C4); (2) the 19 notes (76 samples) of the lowest register of the 
instrument, ranging from D3 (147 Hz) to Ab4 (415 Hz); (3) 
the two lowest registers of the instrument, from D3 (147 Hz) 
to A5 (880 Hz), encompassing 32 notes (128 samples). 

4. The instrument physical timbre space 

4.1. Trajectories 

The reduction in dimensionality resulted from PCA made it 
possible the representation of the spectral distribution on low 
dimensional spaces. Figure 2 shows three-dimensional 
trajectories of the four sounds of note Bb3 along its own 
space. The correlation between intensity level and the first PC 
is evident as the spectral points belonging to each sound are 
separated in groups positioned in increasing order from pp to 
ff along the first PC dimension. Almost confined in their 
position along the first PC, the 2nd and 3rd PCs vary 
differently in different directions for each sound. 
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Figure 2: Three-dimensional trajectories of the four 
sounds of note Bb3 in the Bb3 timbre space. 

Comparison of timbre parameters among notes of different 
pitch becomes more complex, as timbre may vary largely as a 
function of the note played (pitch), depending on the 
instrument. Clarinet sounds, as used in this study, present 
irregular variation of timbre from note to note, which can be 
very accentuated, depending on the region of the instrument, 
like the abrupt timbre change between the low and mid 
registers, a well known characteristic of the clarinet. Figure 3 
shows the four contiguous notes above mentioned (A3, Bb3, 
B3 and C4), represented in the spectral space defined by 
them. The same correlation between intensity level and the 
first PC is present, as well as the grouping of all frames of a 
single sound. Moreover, we can identify clustering of 
different sounds from different notes: softer sounds (pp and 
mp) on the right side of  the space and louder sounds on the 
left. We can also observe that louder sounds such as A3 ff, A3 
mf and C4 ff  have their trajectories more spread then softer 
sounds. 
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Figure 3: Three-dimensional trajectories of all four sounds of notes A3, Bb3, B3 
and C4 in the spectral space defined by them. 

4.2. Clustering 

An attempt to investigate the timbre distribution along the 
entire instrument was made with Cluster Analysis, using the 
K-means algorithm [19]. In the K-means problem, given a set 
of N M-dimensional points Xn, the goal is to arrange these 
points into K clusters, with each cluster having a 
representative point Zk, usually chosen as the centroid of the 
points in the cluster. Each cluster variance is defined by 

2)()ESS( ∑
∈

−=
kCi

kikC cx  , (3) 

where Ck contains the M-dimensional coordinates of Cluster 
Ck, and (Xi – Ck) can be any desired distance metric. The 
individual variances ESS(Ck) of Equation 3 is minimized in 
such a way that moving any single point to a different cluster 
increases the overall variance defined by 
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Since the K-means can converge to a local optimum, the 
initial centroid values must be appropriately chosen; or the 
iterative algorithm must be run exhaustively with different 
random starting points. In the present analysis, the variance of 
a cluster was calculated using the Squared Euclidean 
Distance, although other types of distance were tested giving 
similar results. Every time an iteration produces an empty 
cluster, the algorithm creates a new cluster consisting of the 
points most distant from its centroid. To avoid local minima, 
the K-means was run 40 times and the best solution was 
chosen. 

Initially, the 16 sounds from the four notes in Figure 3 
were classified using the 75 point trajectories of the first 5 
PCs as inputs. The cluster analysis distributed all 16 sounds in 
6 clusters, where all the 75 spectral points of each sound lied 

in one single cluster. A new cluster analysis was then 
performed using the 19 notes (76 sounds) from the low 
register of the clarinet. Nine clusters provided the best 
correlation between preliminary auditory tests and the 
classification obtained for this set of sounds. Very few of 
these sounds had their spectral points split into different 
clusters and, when this happened, no more than 2 clusters 
were involved and the cluster assigned to the central part of 
the sound was always the cluster where the majority of points 
lied. Figure 4 shows the 11 lower notes of the clarinet (from 
D3 to C4), represented by the location of its central frame on 
the low register timbre space. The figure shows a large group 
of sounds clustered together close to the origin of the space 
(left), which includes the pp or mp version (or both) of every 
note of this set, except for the Eb3. Sounds mf and ff are more 
spread along all three dimensions, showing that intensity level 
differentiation spread the sounds more strongly than pitch 
differentiation. 

This can also be observed in Figure 5, which orders all 76 
sounds of the low register of the clarinet by pitch and shows 
the cluster to which each one was assigned. This figure is a 
projection of Figure 4, that highlights the correlation of the 
cluster with intensity level. Informal auditory tests showed a 
strong coupling of perceived brightness to cluster assignment. 
Due to the known relationship of spectral centroid to the 
perception of brightness, cluster labels were ordered 
according to the mean of the spectral centroid of the group of 
sounds assigned to it. Note that the first 3 clusters group 
almost every pp and mp sounds of the whole set. Moreover, 
notes of higher pitch in mf and ff were also assigned to these 
clusters. While higher pitched notes were grouped more 
tightly into these clusters, the four last clusters contain only 
mf and  ff notes of the lower octave, except for the sounds E4 
mf and F4 ff. The fact that only the amplitude spectra were 
used in the cluster analysis and no perceptual weighting was 
applied corroborated with these results. 
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Figure 4: Three-dimensional trajectories of the four sounds of each of the 11 lowest notes of the 
clarinet, from D3 to C4, in  the spectral space defined by the entire low register  (points not labeled 
on the left of the figure correspond to notes D3 pp, E3 pp, F3 pp, F3 mp, F#3 pp, F#3 mp, G3 pp, 

Ab3 pp, A3 pp, Bb3 pp, Bb3 mp, Bb3 mf , B3 pp, B3 mp, C4 pp and C4 mp).
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Figure 5: Cluster Label of the 19 notes of the low register 
of the clarinet. Notes are ordered by pitch and cluster 

labels by the mean of the spectral centroids. 

Figure 6 shows the cluster trajectory of the four sounds of 
each of the three lowest and three highest notes of the low 
register. Notes are ordered by pitch and clusters are scaled 
onto vertical axis. It represents the individual lines of Figure 5 
in 2 dimensions, highlighting that notes of lower pitch tend to 
have a wider variation in timbre and that timbre becomes 
more stable and concentrated in lower clusters as the pitch 
increases. 

A new cluster analysis was then performed using the 33 
notes (132 sounds) including the first and second registers 
(D3 to Bb5) of the clarinet. Twelve clusters were found to be 

more adequate for this sound set. Except for a few cases, the 
sounds of the second register (A4 to Bb5) lied in the five first 
clusters, together with other pp and mp notes from the lowest 
register. This corroborates the above observed tendency of 
higher notes to be clustered tighter together, reinforcing the 
correlation of the classification to the variation of the 
intensity level, as well as the diminishing of timbre variation 
as pitch increases. 
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Figure 6: Cluster trajectory of the 3 lowest and the 3 
highest notes of the low register of the clarinet, D3, Db3, 
E3, F#4, G4, Ab4. Notes are ordered by pitch and cluster 

labels by the mean of the spectral centroids. 



5. Conclusion 
This study carries out timbre representation of a musical 
instrument based on spectral parameters extracted from 
sounds performed on that instrument. Principal component 
analysis is used for dimensionality reduction, and a clustering 
technique is used to categorize the different timbres produced. 
Auditory tests of discrimination with resynthesized sounds 
with normalized pitch showed the effectiveness of this 
representation model, showing a clear relation between the 
perceived timbre and the cluster label to which the notes were 
assigned. Contiguous notes presented individual spectral 
bases with similar characteristics and were mapped to closer 
sub-spaces. This similarity allowed expansion of the size of 
these sub-spaces, facilitating representation of larger groups 
of notes. The construction of spectral sub-spaces involving all 
possible sounds produced by the instrument made it possible 
a compact representation of the whole timbre palette of the 
instrument. This unified representation allowed a timbre 
classification according to the distance metrics of the PCA 
timbre space by cluster analysis techniques, providing a 
descriptive comparison of the dynamic variation of timbre. 

Summarizing, it could be clearly verified across all the 
results presented in this study that: (i) timbre classes tend to 
be divided as a function of spectral brightness, which is 
known to be correlated to intensity level in wind instruments; 
(ii) the lowest octave of the clarinet exhibits in general much 
more richness of timbre differentiation than higher pitched 
notes; (iii) higher notes exhibit less spectral brightness and 
less timbre differentiation. 

The results of this study applied to wider dynamic timbre 
variation will facilitate the investigation of the use of 
intentional timbre differentiation by the performer to convey 
musical expressiveness. Other perspectives for this project are 
to extend the investigation to shorter sounds, like staccati and 
pizzicati, as well as attack, decay and transition between 
notes, for which auditory models seem to be an adequate 
analysis tool. 
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