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Abstract
In modern concatenative synthesis, unit selection is normally cast
as a multivariate optimization task, yet comprehensively encapsu-
lating the underlying problem of perceptual audition into a rich
enough mathematical framework remains a major challenge. Ob-
jective functions typically considered to quantify acoustic disconti-
nuities, for example, do not closely reflect users’ perception of the
concatenated waveform. This paper considers an alternative fea-
ture extraction paradigm, which eschews general purpose Fourier
analysis in favor of a modal decomposition separately optimized
for each boundary region. The ensuing transform preserves, by
construction, those properties of the signal which are globally rel-
evant to each concatenation considered. This leads to a join cost
strategy which jointly, albeit implicitly, accounts for both inter-
frame incoherence and discrepancies in formant frequencies/band-
widths. Systematic listening tests underscore the viability of the
proposed approach in accounting for the perception of discontinu-
ity between acoustic units.

1. Introduction
In modern concatenative text-to-speech (TTS) synthesis, the
acoustic signal is generated from pre-recorded speech units, nor-
mally extracted from a large database with varied phonetic and
prosodic characteristics. The selection of the best unit sequence is
cast as a multivariate optimization task, which seeks to minimize
an overall cost criterion across the entire database. As this crite-
rion takes aim at human audition, it is usually composed of: (i)
a target cost (how closely candidate units in the database match
the specification of the target phone sequence), and (ii) a join or
concatenation cost (how smoothly neighboring units flow into one
another) [1]. Because any subsequent manipulation of the con-
catenated waveform is liable to degrade signal quality, it is highly
desirable that these cost functions accurately predict user’s percep-
tion of smoothness and naturalness [2].

Target cost functions typically exhibit a sufficient degree of fi-
delity, in the sense that the metrics chosen tend to be reasonable
quantifiers of how different units might immediately affect, e.g.,
prosody [3]. Join cost functions, however, have proven harder to
agree upon, because of a more complex relationship to speech per-
ception. Qualitatively, the extent to which various features affect
perception is well understood: for example, unnatural sounding
speech results from both interframe incoherence and discontinu-
ities in the formant frequencies and in their bandwidths [4]. But
quantitatively, any measure of perceived discontinuity is intricately
tied to the underlying representation of speech.

The latter may involve such distinct entities as FFT amplitude
spectrum, perceptual spectrum, LPC coefficients, mel-frequency
cepstral coefficients (MFCC), multiple centroid coefficients, for-
mant frequencies, or line spectral frequencies, to name but a few

[5] – [7]. While they are all derived from the same Fourier anal-
ysis of the signal, each representation has led to its own distance
metric to assess spectral-related discontinuities. In contrast, phase
mismatches are usually glossed over, to be compensated for belat-
edly at the signal modification stage [8].

This paper considers a different feature extraction paradigm,
which leads to an alternative assessment of the (dis-)similarity be-
tween two acoustic units. In contrast to traditional Fourier anal-
ysis, the new features are not derived via projection onto signal-
independent complex sinusoids, but in terms of a modal decom-
position which yields a separately optimized set of basis compo-
nents for each boundary region of interest. Because this transform
framework is better suited to preserving globally relevant proper-
ties in the region of concatenation, the resulting boundary-centric
representation proves beneficial when comparing concatenation
candidates against each other [9].

The paper is organized as follows. The next section gives a
general overview of feature extraction for concatenative TTS syn-
thesis, and motivates the alternative outlook adopted. Section 3
describes in greater detail the mechanics of the underlying modal
decomposition. In Sections 4 and 5, we show how the resulting
signal representation can be naturally leveraged for unit selection
TTS and unit boundary training, respectively. Finally, Section 6 re-
ports on formal listening comparisons using conventional feature
extraction as baseline.

2. Overview
As mentioned above, acoustic discontinuities are more difficult to
quantify in a perceptually consistent way than prosodic disconti-
nuities. Accordingly, we will focus on the problem of calculating
the join cost between two acoustic units.

2.1. Underlying Issues

The conventional approach to this problem is depicted in Fig. 1.
For the current speech segment straddling the boundary between
the two units, a standard Fourier analysis produces the magnitude
spectrum of the signal, while phase information is basically dis-
carded. Optional manipulation then yields one of many spectrum-
derived feature representations, such as the cepstrum. This repre-
sentation in turn leads to a specific spectral-related metric, such as
Euclidean formant distance, symmetric Kullback-Leibler distance,
partial loudness, Euclidean distance between MFCC, likelihood
ratio, mean-squared log-spectral distance, etc. Many of the above
spectral measures have been systematically reviewed in the litera-
ture: see, e.g., [5] – [7], as well as [10] and the references therein.
No single spectral distance was found to be best in all studies [10].
Not coincidentally, all fall short of ideal performance: none of
them succeeds in achieving a correlation with perception greater
than 60-70% (cf. [6]).



Frame

S
tr

ad
dl

in
g 

B
ou

nd
ar

y 
C

ur
re

nt
 S

pe
ec

h 
S

eg
m

en
t 

Phase Information
(unused)

F
eature S

pace 

Additional

Processing

Transform
Complex−valued

Fourier

Analysis
(e.g., cepstral)

Magnitude

Spectrum
Local

Window

Boundary

Figure 1: Conventional Feature Extraction Framework.

One possible explanation is that, when it comes to measur-
ing perceived discontinuity, determining distances between spec-
tral envelopes across unit boundaries may be necessary but not
sufficient. Joint consideration of phase information may also be
critical. This entails a radical departure from traditional (magni-
tude spectrum) Fourier analysis, involving an alternative form of
“modal” analysis with simultaneous, albeit possibly implicit, treat-
ment of both frequency and phase. The idea is to expose the gen-
eral modes of the signal in the boundary region of interest, not just
their specific frequency (or phase) components.

2.2. Alternative Framework

The implementation of this idea is guided by two observations.
First, implicit or not, the treatment of phase is likely to be facili-
tated if we consider pitch synchronous epochs. While pitch syn-
chronicity by itself is no panacea in the traditional Fourier frame-
work, largely due to imperfect estimation, it is certainly worth
adopting in any effort to expose general patterns in the signal.
Besides, it is only at the boundaries that we want to measure the
amount of discontinuity, so all the relevant information is likely
to be contained within just a few pitch periods surrounding each
boundary. The second observation has to do with the global scope
of the analysis. When trying to decide which candidate unit is op-
timal at any given boundary point, all speech units straddling the
boundary are likely to be germane to the decision. Thus, modes
should be exposed based on features extracted, not from an indi-
vidual instance, but from the entire boundary region. This assumes
a global optimization framework such as offered, for example, by
singular value analysis.

In this paper, we therefore adopt the framework illustrated in
Fig. 2, in which the modal analysis of the signal is carried out
through a pitch synchronous singular value decomposition in each
boundary region of interest. For a given boundary point, we gather
all frames in the vicinity of this point for all instances from the
database which straddle the boundary. This leads to a matrix where
each row corresponds to a particular pitch period near the given
boundary. At this point, it is straightforward to perform a matrix-
style eigenanalysis via singular value decomposition (SVD).

The idea of matrix eigenanalysis is closely aligned with the
concept of non-negative matrix factorization, recently exploited in
[11] for the purpose of automatic auditory scene analysis. Clearly,
both kinds of decomposition aim at dimensionality reduction, for
the specific purpose of exposing useful aspects of the signal.
Where they differ substantially is in the input data: the matrix
factorization of [11] operates on a conventional magnitude spec-
trogram, whereas the framework of Fig. 2 operates directly on the
time-domain samples. Thus, while in [11] the rows of the matrix
are associated with standard frequency bins, here they are associ-
ated with actual (untransformed) instances from the database. In
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Figure 2: Alternative Feature Extraction Framework.

other words, the SVD in Fig. 2 has the additional mission of map-
ping the signal into a suitable transform domain.

This outlook has several benefits. First, since the SVD is a
real-valued transform, both amplitude and phase information are
retained, and in fact contribute simultaneously to the outcome.
Second, this offers a global view of what is happening in the
boundary region, as encapsulated in the vector space spanned by
the resulting set of left and right singular vectors. Third, these
vectors are, by construction, optimized for this boundary region,
by opposition to the traditional set of signal-independent complex
sinusoids. And finally, this representation is parsimonious, to the
extent that an empirically consistent value is selected for the di-
mension of the space. In fact, by analogy with the latent semantic
analysis framework (cf. [12]), we associate with each row of the
matrix (i.e., pitch period) a coordinate vector in that space, which
can be viewed as a feature vector analogous to, e.g., a traditional
cepstral vector. This new representation then directly leads to a
concatenation metric defined on the alternative feature space.

3. Modal Decomposition
To fix ideas, consider among the set of recorded utterances the col-
lection of all possible speech segments ending or starting within
the phoneme P , so we can concentrate on a (diphone-style) con-
catenation within P . Two such acoustic segments, S1-R1 and L2-
S2, are depicted in Fig. 3.

3.1. Matrix Construction

For both segments, we consider the boundary region consisting of
the 2K−1 centered1 pitch periods π−K+1 . . . π0 . . . πK−1 (across
S1-R1) and σ−K+1 . . . σ0 . . . σK−1 (across L2-S2). In each case,
the boundary falls exactly in the middle of either π0 or σ0. For
voiced speech units, each pitch period is defined as the span be-
tween two consecutive glottal closure points, and obtained through
conventional pitch epoch detection (see, e.g., [13]). For voiceless
speech units, the time domain signal is similarly chopped into anal-
ogous, albeit constant-length, portions.

Further assume that there are M units like S1-R1 and L2-
S2 present in the unit inventory, i.e., with a boundary within P .
This results in (2K − 1)M pitch periods in total, encapsulating
the entire boundary region. Assuming N denotes the maximum
number of samples observed in each of these centered pitch pe-
riods, we symmetrically zero-pad and appropriately window all
centered pitch periods to N , as necessary. The outcome is a
((2K − 1)M × N) matrix W with elements wij , where each

1With a centered representation, the boundary can be precisely charac-
terized by a single vector in the resulting feature space [9]. (In a more con-
ventional framework, the boundary is normally inferred a posteriori from
the position of the two vectors on either side.)
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Figure 3: Speech Segment Notation (K = 3).

row ri corresponds to a centered pitch period, and each column cj

corresponds to a slice of time samples. This matrix W , illustrated
in the left-hand side of Fig. 4, is the input matrix sought.

3.2. SVD Decomposition

At this point we perform the SVD of W (cf. [9]) as:

W = U S V T , (1)

where U is the ((2K − 1)M × R) left singular matrix with row
vectors ui (1 ≤ i ≤ (2K − 1)M), S is the (R × R) diagonal
matrix of singular values s1 ≥ s2 ≥ . . . ≥ sR > 0, V is the
(N ×R) right singular matrix with row vectors vj (1 ≤ j ≤ N),
R < min(N, (2K − 1)M) is the order of the decomposition, and
T denotes matrix transposition.

As is well known, both left and right singular matrices U and
V are column-orthonormal, i.e., U T U = V T V = IR (the iden-
tity matrix of order R). Thus, the column vectors of U and V
each define an orthornormal basis for the space of dimension R
spanned by the (R-dimensional) ui’s and vj’s. By analogy with
latent semantic analysis (cf. [12]), this space is sometimes called
the latent semantic mapping (LSM) space L [14]. This is because,
in essence, the rank-R decomposition (1) defines a mapping be-
tween the set of centered pitch periods and (after appropriate scal-
ing by the singular values) the set of R-dimensional feature vectors
ūi = uiS.

The feature extraction mechanism illustrated in Fig. 4 takes a
global view of what is happening in the boundary region for the
phoneme P . Indeed, the relative positions of the feature vectors
is determined by the overall characteristics observed in the rele-
vant pitch periods, as opposed to an analysis restricted to a par-
ticular instance, be it frequency domain processing or otherwise.
Hence, two vectors ūk and ū` “close” (in some suitable metric) to
one another in the new feature space can be expected to reflect a
high degree of similarity in the relevant pitch periods, and thus po-
tentially a small amount of perceived discontinuity in the ensuing
concatenated acoustic signal.

3.3. Comparison with Fourier Analysis

The above approach has interesting parallels with standard Fourier
analysis. Introducing the sinusoidal transform kernel, defined
as the symmetric complex matrix Φ such that Φk` = (1/

√
N)

exp{−j2πk`/N}, such analysis entails:

Xi = ri Φ , ri = Xi Φ H , (2)

where Xi = Xi1 . . . XiN is the (normalized) Fourier transform
vector associated with the row ri = wi1 . . . wiN of W , and H

denotes Hermitian transposition. Note that, in particular, Φ is
(column-)orthornormal just like U and V .
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Figure 4: Decomposition of the Input Matrix.

The analysis (2) corresponds to the classical decomposition of
the signal as a superposition of its sinusoidal projections. The in-
ner product of ri with the kth basis sinusoid has a simple interpre-
tation as a measure of the amplitude and phase of the complex si-
nusoid present in ri at the corresponding frequency. Equivalently,
each component of Xi can be seen as the (complex valued) co-
efficient of projection of ri onto a particular basis sinusoid. The
sinusoidal transform kernel Φ is reasonably well justified from a
psycho-acoustic point of view, since the human ear acts as a kind of
Fourier spectrum analyzer. On the other hand, the ear most likely
is a non-linear system, whose true “analysis” parameters are yet
unknown. In this respect, (2) can be regarded as an approximate
(linear) analysis of the acoustic signal.

It thus becomes clear that (1) simply corresponds to an alter-
native linear approximation, brought about by another choice of
transform kernel. From (1), each row ri of W can be expressed
as:

ri = ui S V T = ūi V T , (3)

which can be interpreted as the inner product of ūi with the set of
right singular vectors V . Thus, each element of ūi can be viewed
as the (real-valued) coefficient of projection of ri onto a partic-
ular basis right singular vector. Furthermore, since, after post-
multiplying by V :

ūi = ui S = ri V , (4)

the inner product of ri with the kth right singular vector can be
interpreted as a measure of the strength of the signal at the mode
represented by this right singular vector. In other words, the SVD
(1) embodies an alternative modal decomposition with a transform
kernel represented by V .

We readily acknowledge that this alternative transform is most
likely inferior to the Fourier approach as a general-purpose signal
analysis tool, if only because it does not explicitly expose the con-
cept of frequency. On the other hand, it displays several properties
which seem to be attractive for the present application: (i) it is
real-valued, and therefore does not require separate treatment for
magnitude and phase; (ii) it is localized in time but global in scope,
since it takes into account all the unit instances which are germane
to the given boundary region; (iii) the projection basis is data-
driven, and hence inherently tailored to the situation considered,
and (iv) the dimension of the basis vectors is inherently parsimo-
nious (in the least squares sense). Basically, the LSM framework
leads to an efficient, optimal (for the Euclidean norm), boundary-
centric representation of the problem. This has potential benefits
in several aspects of unit selection TTS synthesis.



4. LSM–Based Unit Selection
The first such aspect is the process of unit selection itself. Re-
ferring back to Fig. 2 and focusing on the potential concatenation
S1-S2, we would like to make sure that this concatenation exhibits
minimal discontinuities. To carry out this task, we first have to
express the concatenation point (or, more precisely, the centered
pitch period straddling the concatenation) in the feature space L,
and then define a suitable measure on this space.

4.1. Concatenation Point

The concatenation S1-S2, shown as the shaded area in Fig. 4, can
be expressed as π−K+1 . . . π1 δ0 σ1 . . . σK−1, where δ0 repre-
sents the concatenated centered period (i.e., consisting of the left
half of π0 and the right half of σ0). By construction, the fea-
ture space L already comprises the vectors ūπk and ūσk , rep-
resenting the centered pitch periods πk and σk, respectively (for
−K + 1 ≤ k ≤ K − 1). This concatenated sequence therefore
has a representation in L given by:

ūπ−K+1 . . . ūπ1 ūδ0 ūσ1 . . . ūσK−1 , (5)

where only one vector, ūδ0 , is not directly available from the LSM
mapping. This vector, however, can easily be calculated by treat-
ing δ0 (basically a row vector of dimension N ) as an additional
row of the original input matrix W . In fact, we trivially obtain:

ūδ0 = uδ0 S = δ0 V , (6)

by simply extending the representation (4) to that additional row.
Hence the concatenation vector (6) corresponds to the representa-
tion of δ0 in L.

4.2. Discontinuity Metric

Given ūδ0 , the discontinuity brought about by this concatenation
can easily be calculated as a function of the difference in “close-
ness” between vectors before and after concatenation. From [12],
[14], we infer that a natural measure to consider is the cosine of
the angle between vectors. We therefore specify the closeness be-
tween two individual vectors as:

K(ūk, ū`) = cos(ukS, u`S) =
uk S 2 u T

`

‖ukS‖ ‖u`S‖
, (7)

for any 1 ≤ k, ` ≤ (2K − 1)M . Introducing the shorthand nota-
tion:

K̃(uσ−1 , uσ0 , uσ1) =
K(ūσ−1 , ūσ0) + K(ūσ0 , ūσ1)

2
, (8)

for the average closeness across the boundary σ0, we therefore
define the discontinuity score between S1 and S2 as:

d(S1, S2) =

K−1X
k=1

2 K̃(uπk , uδ0 , uσk )

− K̃(uπk , uπ0 , uπ−k ) − K̃(uσ−k , uσ0 , uσk ) . (9)

The discontinuity score can be thought of as the relative cumu-
lative change in closeness that occurs within the boundary region
along the entire concatenation trajectory.

An important special case is when the two speech units con-
sidered are in fact contiguous in the database, i.e., the σ’s are iden-
tically equal to the π’s. In this situation, it can be easily verified

Compute resulting LSM vector space

cut points?

in [−K,K] boundary region

2

For all M instances, set as new boundary
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accumulate  d(S  , S  ) over M    concatenations
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 1 2

2 1
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For all (2K−1)xM possible boundaries,

Any change in

Figure 5: Iterative Training of Unit Boundaries.

that δ0 = σ0 = π0. Hence d(S1, S2) ≥ 0, with equality if and
only if S1 = S2: it is guaranteed to be zero anywhere there is
no artificial concatenation, and strictly positive at an artificial con-
catenation point. This ensures that contiguously spoken pitch pe-
riods always resemble each other more than the two pitch periods
spanning a concatenation point. In other words, the closer to zero
the discontinuity score, the smoother (and thus more attractive)
the concatenation, and the larger the discontinuity score, the more
perceptibly salient the concatenation [9].

5. LSM–Based Boundary Training
Boundary-centric feature extraction can also be leveraged for unit
segmentation, at the time the underlying unit inventory is com-
posed. This entails systematically optimizing all unit boundaries
before unit selection, so as to effectively minimize the likelihood of
a really bad concatenation. We refer to this (off-line) optimization
as the data-driven “training” of the unit inventory, in contrast to the
(run time) “decoding” process embedded in unit selection [15]. To
carry out this task, we follow the approach recently advocated in
[15], which effectively guarantees that at run time, uniformly high
quality units are available to choose from.

5.1. Implementation

In [15], the evaluation criterion (9) is embedded in an iterative pro-
cedure to sequentially refine (train) the unit boundaries. The basic
idea is to focus on each possible boundary region in turn, com-
pute the LSM space associated with this region, adjust individual
boundaries in that space, update the boundary region accordingly,
and iterate until convergence. At each iteration, the discontinu-
ity score (9) resulting from the concatenation of every instance of
a particular unit with all other instances of that unit is computed
for a neighborhood of the current hypothesized boundary. The cut
point yielding the lowest average score is then retained as the new
boundary for the next iteration.

The iterative boundary training procedure follows the
flowchart of Fig. 5. The initialization step can be performed in
a number of different ways,2 but in practice, we have found little

2For example, the initial boundary for each instance can be placed in
the most stable part of the phone (where the speech waveform varies the



difference in behavior based on these various forms of initial con-
ditions [15]. Once this is done, we gather the 2K − 1 centered
pitch periods for each unit instance, and derive the resulting LSM
space L. This leads to (2K − 1)M feature vectors in the space,
and hence as many potential new boundaries. For each of them,
we compute the associated average discontinuity by accumulating
(9) over the set of M2 possible concatenations. This results in
2K−1 discontinuity scores for each instance, the minimum value
of which yields the cut point to be retained. The new boundaries
form the basis for a new boundary region, and the procedure iter-
ates until no change in cut points is necessary.

5.2. Convergence

Since the boundary region shifts from one iteration to the next,
the LSM space does not stay static. While this complicates the
derivation of a theoretical proof of convergence, it can still be done
by exploiting the fact that after each iteration the space remains
relatively close to its previous incarnation. As shown in [16], the
iterative procedure does converge in the least squares sense to a
global minimum.

The associated final boundaries are therefore globally optimal
across the entire set of observations for the phoneme P . Note that,
with the choice of the LSM framework, this outcome holds given
the exact same discontinuity measure later used in unit selection.
Not only does this result in a better usage of the available train-
ing data, but it also ensures tightly matched conditions between
training and decoding.

6. Experimental Results
We now briefly summarize some of the results we have obtained
using male and female voice databases deployed in MacinTalk,
Apple’s TTS offering on MacOS X. Qualitatively, these databases
are fairly similar to the Victoria corpus described in detail in [17].
In particular, recording conditions closely follow those mentioned
in [17], though individual utterances generally differ. Complete
experimental conditions, as well as additional sets of results, can
be found in [9] and [16].

6.1. Unit Selection

In order to support a systematic listening comparison, we consid-
ered eight different words consisting of three phonemes each, so
they could be realized from concatenated units S1-S2 with a con-
catenation in the middle phoneme. In SAMPA computer readable
phonetic notation [18], the test words were chosen to be: [mAn]
and [sun], as examples of a concatenation in the middle of a steady
spectrum vowel; [Anu] and [umA], as examples of a concatenation
in the middle of a steady spectrum consonant; [lOIn] and [maUs],
as examples for varying spectrum vowels; and [Alu] and [Aru], as
examples for varying spectrum consonants.

For each test word, stimuli were appropriately selected (us-
ing the procedure detailed in [9]) from a set of assembled utter-
ances synthesized using a female voice database. These stimuli
served as material for a perceptual experiment involving seven par-
ticipants (five generally conversant in speech processing, and two
with a more advanced background in psycho-acoustics or phonet-
ics). Each evaluation session started with a familiarization phase
in which reference utterances were used to demonstrate concate-

least), or, more expediently, simply at its midpoint [15].

Table 1. Unit Selection Listener Preference Results.
Maximum Score Achievable is 7.

Test Prefer Prefer Prefer
Word LSM None MFCC

[mAn] 6 1 0
[sun] 5 2 0

[lOIn] 5 2 0
[maUs] 4 2 1

[Anu] 5 2 0
[umA] 4 3 0

[Alu] 3 3 1
[Aru] 3 3 1

Average Score 4.4 2.3 0.4
95% Confidence ± 0.7 ± 0.5 ± 0.3

nations which were clearly smooth (in fact, contiguous) and con-
catenations which were clearly discontinuous.

For each test word, the participants listened sequentially to
two stimuli comprising the two concatenations identified as best
by each of two measures: (i) the LSM metric (9), and (ii) the stan-
dard Euclidean distance between MFCC vectors. In each case,
the order of presentation was randomized. The subjects had to
judge whether the transition at the diphone boundary was deci-
sively smoother, about the same, or decisively more discontinuous
in the first utterance than in the second. Because subjects had to
concentrate on just one discontinuity at a time, and had minimal
distractions from syntactic and semantic constructs, this setup was
thought to result in a more critical test than when using real speech
[6]. The comparative nature of the setup was also believed to mit-
igate the common problem of varying thresholds among listeners.
The participants all felt they had been able to make consistent de-
cisions after the familiarization phase.

Tabulating the results for each test word yields the distribu-
tion of favored candidates presented in Table 1. For each column,
the average score represents the average number of participants
who elected the associated outcome. All confidence intervals are
calculated at the 95% confidence level. Table 1 shows that the can-
didates selected using the LSM approach were preferred about an
order of magnitude more often than those selected by the standard
MFCC-based metric. Furthermore, the “Prefer LSM” outcome is
significantly more likely than the combination of “Prefer MFCC”
and “Prefer None” outcomes. We infer that the LSM-selected can-
didates contained a smaller amount of perceivable audible discon-
tinuity, which in turn points to a higher agreement of the LSM
distance with perceived outcome.

6.2. Boundary Training

A formal listening test was also performed to establish the practi-
cal validity of the iterative boundary training procedure proposed
in Fig. 5. As stimuli, we generated a set of five whole sentences,
where the database was segmented entirely using either of two
ways. In the baseline case, unit boundaries were (classically) ob-
tained by placing the cut point in the most stable part of the phone.
In the alternative case, they were taken from the final iteration of
boundary training. This resulted in two renditions of each sen-
tence, this time synthesized using a male voice database.

Nine participants were selected, including two users with no
background whatsoever in phonetics or speech processing. For



Table 2. Boundary Training Listener Preference Results.
Maximum Score Achievable is 9.

Utterance Prefer Prefer Prefer
LSM None Base

Example1 5 2 2
Example2 3 4 2
Example3 8 0 1
Example4 3 2 4
Example5 9 0 0

Average Score 5.6 1.6 1.8
95% Confidence ± 2.2 ± 1.3 ± 1.2

each pair of utterances, they were asked to listen sequentially to
the two renditions, and indicate which version they preferred over-
all, if any. In each case, the order of presentation was randomized.
After rendering each judgment, they were given a chance to ver-
bally express what motivated their decision. Tabulating the results
for each example yields the distribution of favored sentences pre-
sented in Table 2.

The five sentences were, respectively: (i) “The boy butterfly
did not like the purple spot.”, (ii) “Please feed the cow right away.”,
(iii) “It was years ago, but you still toy around.”, (iv) “Investors
had expected the Fed would stop before negatively affecting the
economy.”, and (v) “A writer who claims the manuscript copied
from his work insisted in court Wednesday that there were specific
echoes of his book in the best-selling thriller.”

Not suprisingly, differences between the two approaches ap-
pear to be more pronounced over some segments than others.
Segments most often singled out by participants included: in
Example1, “boy butterfly” and “the purple;” in Example2,
“the cow” and “right away;” in Example3, “years ago” and
“toy around;” in Example4, “expected” and “negatively;” and in
Example5, “a writer,” “insisted in court,” and “specific echoes.”

Table 2 shows that, on the average, the sentences synthe-
sized from the database featuring the optimal cut points were pre-
ferred over three times more often than those synthesized from
the database with the baseline cut points. Furthermore, the “Pre-
fer LSM” outcome is substantially more likely than the combina-
tion of “Prefer Base” and “Prefer None” outcomes. We infer that
LSM feature extraction and subsequent boundary training resulted
in boundaries with a smaller amount of perceivable audible dis-
continuity.

7. Conclusion
We have proposed a boundary-centric approach to signal repre-
sentation, where the transform domain is defined via a pitch-
synchronous modal decomposition of the time-domain samples
gathered separately across each boundary region of interest. Com-
pared to conventional spectral analysis using the standard Fourier
basis, this alternative, LSM-based feature extraction inherently
preserves those properties of the signal which are globally relevant
to the concatenation considered. This makes it an attractive frame-
work to assess smoothness (or lack thereof) between concatenated
units in unit selection TTS utterances.

This boundary-centric paradigm leads to an alternative join
cost strategy which jointly accounts for both interframe incoher-
ence and discrepancies in formant frequencies/bandwidths. By
leveraging both magnitude and phase information simultaneously,

the resulting discontinuity metric is nominally able to reflect, more
tightly than usual measures, users’ perception of the concatenated
acoustic waveform. This has potential benefits in several aspects
of unit selection TTS synthesis, including unit selection itself, as
well as the optimal training of unit boundaries.

Formal listening tests conducted in these two domains con-
firm that utterances synthesized using the proposed approach ap-
parently comprise less egregious discontinuities than those synthe-
sized in a more conventional way. This suggest that boundary-
centric feature extraction is in fact well suited to quantifying
perceived discontinuity between acoustic units. This conclusion
seems to hold true particularly well for monophthongs, diph-
thongs, and nasals, and to a slightly lesser extent for liquids.

Future efforts will concentrate on more systematically explor-
ing the influence of the feature extraction parameters (particularly
K, the size of the boundary region, and R, the dimension of the
feature space), in order to better characterize their relationship to
factors such as phoneme identity, number of observations, domi-
nant style of elocution, and overall prosodic context distribution.
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