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Abstract
This paper addresses automatic speech recognition (ASR) for
robots integrated with sound source separation (SSS) by using leak
noise based missing feature mask generation. The missing feature
theory (MFT) is a promising approach to improve noise-robustness
of ASR. An issue in MFT-based ASR is automatic generation of
the missing feature mask. To improve robot audition, we applied
this theory to interface ASR and SSS which extracts a sound source
originated from a specific direction by multiple microphones. In
a robot audition system, it is a promising approach to use SSS
as a pre-processor for ASR to be able to deal with any kind of
noises. However, ASR usually assumes clean speech input, while
speech extracted by SSS never fails to be distorted. MFT can be
applied to cope with distortion in the extracted speech. In this
case, we can assume that the noises included in extracted sounds
are mainly leakages from other channels. Thus, we introduced
leak noise based missing feature mask generation, which can gen-
erate a missing feature mask automatically by using information
on leak noise obtained from other channels. To assess the effec-
tiveness of the leak noise based missing feature mask generation,
we used two methods for SSS: geometric source separation (GSS)
and independent component analysis (ICA), and Multiband Ju-
lian for MFT based ASR. The two constructed systems, that is,
GSS-based and ICA-based robot audition systems, were evaluated
through recognition of simultaneous speech uttered by two speak-
ers. As a result, we showed that the proposed leak noise based
missing feature mask generation worked well in both systems.

1. Introduction
“Listening to several things at once” is people’s dream and one
goal of AI and robot audition, because psychophysical observa-
tions reveal that people can listen to at most two things at once
[1]. Robot audition is an essential intelligent function for robots
working with humans. Since robots encounter various sounds and
noises, robot audition systems should be able to recognize a mix-
ture of sounds and be noise-robust. Since robots are deployed in
various environments, robot audition systems should require min-
imum a priori information about their acoustic environments and
speakers [2, 3].

A robot audition system usually integrates sound source sepa-
ration (SSS) and automatic speech recognition (ASR) subsystems.
To minimize a priori information, we use blind source separation

and a beamformer for SSS and missing feature theory (MFT) for
ASR. The former literally separates sound signals from a mixture
of sounds without assuming the characteristics of sound sources.
The latter recognizes speech signals with a clean acoustic model
by using missing feature masks (MFMs) that specify whether each
spectral feature is reliable or not.

The most critical issue in missing-feature-mask generation is
reliability estimation of spectral features in separated speech sig-
nals. The conventional studies on MFT focus only on cases where
interfering sounds are quasi-stationary noises. This approach can-
not handle two simultaneous speech signals. We assume that sep-
arated sounds are distorted mainly by signal leakage from other
sound sources. If sound source separation is not perfect, separated
sounds include sounds of non-target sources. We call the sounds
leak noise. Therefore, in separating sounds, the system first es-
timates signal leakage and then identifies which spectral compo-
nents are distorted. Finally, it creates MFMs that specify whether
each spectral feature is reliable or not.

We demonstrated the performance of automatically generated
MFMs by evaluating two robot audition systems:

GSS a Gometric Source Separation (GSS) with eight micro-
phones, and automatic MFM generation for it, and

ICA an Independent Component Analysis (ICA) with two micro-
phones and automatic MFM generation for it.

The separated speech signals and their associated MFMs were
transmitted to MFT-based ASR (MFT-ASR) to recognize the
speech.

In GSS, a multi-channel post-filter estimates signal leakage
from different sources and quasi-stationary noises. In ICA, a
SIMO (single-input multiple-output) model is used to obtain two
channels (left and right) for each sound source. Then SIMO sig-
nals are used to estimate signal leakage.

This paper describes two systems, ICA and GSS, from the
viewpoint of MFT. It presents MFT-ASR, explains benchmarks,
and presents their results.

1.1. Related Work

Noise-robust ASRs have been studied extensively, for example in
the AURORA project [4, 5]. One common method, in particular
for in-car and telephony applications, is multi-condition training
(training on a mixture of clean speech and noises) [6, 7]. Since an



acoustic model obtained by multi-condition training reflects all ex-
pected noises in specific conditions, ASR’s use of such an acoustic
model is effective only as long as speech including the expected
noises is recognized. This assumption holds well for background
noises in a car and on a telephone. However, multi-condition train-
ing may not be effective for robots, since they usually work in a
dynamically changing noisy environment.

MFT-based ASR has been studied as a method of noise-robust
ASR [8]. A spectrographic mask (also called MFM in this paper)
is the set of tags that identify reliable and unreliable components of
the spectrogram. MFT-based ASR uses this spectrographic mask
to ignore corrupt signals during the decoding process. There are
two main kinds of missing feature methods: feature-vector impu-
tation and classifier modification. The former estimates unreliable
components to reconstruct a complete uncorrupted feature vector
sequence and use it for recognition [9]. The latter modifies the
classifier, or recognizer, to recognize speech signals using reliable
separated components and unreliable original input components
[10, 11, 12, 13, 14].

Techniques of speech recognition in the presence of other
speaker have been studied. McCowan et al. reported a combi-
nation of missing data speech recognition and microphone array
[15]. Their system recognized speech mixed with stationary noise
and a low level of background speech. Coy et al. reported a tech-
nique using speech fragment decoder based on missing data speech
recognition [16]. Their systems divide spectral components into a
set of spectro-temporal fragments, and recognized two simultane-
ous speech signals by using MFT. Brown et al. reported simul-
taneous speech recognition by using speech separation based on
the statistics of binaural auditory features and missing data speech
recognition. We present MFM generation method for a system
based on sound source separation with multiple microphones and
missing data speech recognition. We focus on simultaneous speech
signals.

Although robot audition requires three essential functions,
sound source localization, separation, and recognition of separated
sounds, most researchers focus only on the first one. Nakadai et
al. [17] have developed a robot audition system that can recog-
nize three simultaneous speech signals for real-time and real-world
processing using a pair of microphones installed in its ear posi-
tion. Their system was developed by unifying four components:
an active audition system to perceive auditory information better
by controlling microphone parameters, a real-time multiple human
tracking system that integrates an active audition system, face lo-
calization, face recognition and stereo vision, an active direction-
pass filter (ADPF) to separate sound sources, and ASR using mul-
tiple direction- and speaker-dependent acoustic models. In other
words, their system required a lot of information about acoustic
environments and speakers.

2. General Recognition Architecture
A general architecture for recognizing several speech sources at
once consists of three components:

1. Sound source separation,
2. MFT-based ASR, and
3. Automatic MFM generation.

The last is a bridge between the first and second components. In
this section, we focus on the second component, MFT-based ASR,
since it is used commonly by ICA and GSS systems. Overview of
general recognition architecture is shown in Figure 1.
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Figure 1: Overview of general recognition architecture

2.1. Acoustic Features of MFT-ASR

Since sound source separation is performed at the level of spec-
tral representation, we adapt spectral features for MFT-ASR. Al-
though Mel-Frequency Cepstrum Coefficient (MFCC) is a com-
mon acoustic feature for ASR, it is not appropriate for MFT-ASR,
because a noise in each frequency band spreads to all coefficients
in cepstral domain. We used the Mel Scale Log Spectrum (MSLS)
obtained by applying Inverse Discrete Cosine Transformation to
MFCCs. The calculation of MSLS is described by Yamamoto et
al. [13]. The acoustic feature vector is composed of 48 spectral-
related acoustic features: 24 spectral and 24 differential features.

2.2. Missing Feature Theory-based Automatic Speech Recog-
nition

MFT-based ASR outputs a sequence of phonemes from acoustic
features of separated speech and the corresponding MFMs. MFT-
based ASR is an HMM-based recognizer, which is commonly used
in conventional ASR systems. The only difference is in their de-
coding processes. In conventional ASR systems, estimation of a
path with maximum likelihood is based on state transition proba-
bilities and output probability in HMM. This process of estimat-
ing output probability is modified in MFT-ASR as follows: let
M(i) be an MFM vector which represents the reliability of the
i-th acoustic feature. The output probability bj(x) is given by

bj(x) =

L
X

l=1

P (l|Sj) exp

(

N
X

i=1

M(i) log f(x(i)|l, Sj)

)

, (1)

where P (·) is a probability operator, x(i) is an acoustic feature
vector, N is the size of the acoustic feature vector, Sj is the j-
th state, and f(x|Sj) is a mixture of L multivariate Gaussians in
j-th state. In marginalization approach [11], the output probabil-
ity is calculated by using knowledge about unreliable features. If
knowledge about any unreliable features is not available at all, the
equation of output probability is equivalent to Equation 1.

We used hard mask (0-1 mask); i.e., 1 for reliable and 0 for
unreliable. It is because performance of the hard masks were better
than that of soft masks according to trying experiments.

For MFT-based ASR, we used Multiband Julius [18, 19],
which is an extension of the Japanese real-time large vocabulary
speech recognition engine Julius [20].

3. ICA-based Separation and MFM
Generation

In the ICA system, sound source separation is ICA. In this section,
we focus on ICA and MFM generation. Overview of ICA is shown
in Figure 2.
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Figure 2: Overview of ICA

3.1. Frequency-domain ICA

We used a frequency domain representation instead of a temporal
domain one. The search space is smaller because the unmixing
matrix is updated for each frequency bin, and thus its convergence
is faster and less dependent on initial values.

The signals were assumed to be observed by linearly mixing
sound sources, expressed as follows:

x(t) =

N−1
X

n=0

a(n)s(t − n), (2)

where x(t) = [x1(t), . . . , xJ(t)]T is the observed signal vector,
and s(t) = [s1(t), . . . , sI(t)]

T is the source signal vector. In
addition, a(n) = [aji(n)]ji is the mixing filter matrix with length
N , where [X]ji denotes the matrix which includes element X in
the i-th row and the j-th column. In our experiment, the number
of microphones, J , was two and the number of multiple sound
sources, L, was two.

The frequency-domain ICA works as follows. First, the short-
time analysis of observed signal is conducted by frame-by-frame
discrete Fourier transform (DFT) to obtain the observed vector
X(ω, t) = [X1(ω, t), . . . , XJ(ω, t)] in each frequency bin ω and
at each frame t. The unmixing process can be formulated for a
frequency bin ω

Y (ω, t) = W (ω)X(ω, t), (3)

where Y (ω, t) = [Y1(ω, t), . . . , YI(ω, t)] is the estimated source
signal vector, and W represents a (2 by 2) unmixing matrix in
frequency bin ω.

For estimating the unmixing matrix W (ω) in (3), an algorithm
based on the minimization of the Kullback-Leibler divergence is
often used. Therefore, we use the following iterative equation with
non-holonomic constraints:

W j+1(ω) = W j(ω) − α{off-diag〈ffi(Y )Y h〉}W j(ω), (4)

where α is a step size parameter that has effects on the speed of
convergence, [j] expresses the value of the jth step in the iter-
ations, and 〈·〉 denotes the time-averaging operator. The oper-
ation, off-diag(X), replaces the diag-element of matrix X with
zero. In this paper, the nonlinear function, ffi(y), is defined as
φ(yi) = tanh(|yi|)ejθ(yi).

3.2. ICA’s Two Problems of Permutation and Scaling

Frequency-domain ICA suffers from two ambiguities: scaling am-
biguity, i.e., the power of separated signals differs at each fre-
quency bin, and permutation ambiguity, i.e., signal components

are swapped among different channels. We solved these ambigui-
ties in order to recover the spectral representation as completely as
possible using Murata’s method [21].

To cope with the scaling ambiguity, we applied the inverse
filter W −1 to the estimated source signal vector Y . Let the re-
constructed observation assuming input from only source i be vi.

vi = W −1EiW x = W −1( 0 · · ·ui · · · 0 )t, (5)

where Ei represents the matrix in which the i-th diagonal element
is one, and the others are zero; i.e.,

P

i Ei = I . This solution
thus produces single-input multiple-output (SIMO) signals. SIMO
signals are used to generate MFMs.

The permutation ambiguity can be solved by taking into con-
sideration correlation of envelopes of power spectrum among fre-
quency bins. By calculating all correlations among frequency bins,
the most highly correlated frequency bins are considered the spec-
trum of the same signal.

3.3. Improvement by Voice Activity Detection (VAD)

Since the convolution model does not reflect actual acoustic envi-
ronments, no methods based on this model can completely decom-
pose each signal component.

The spectral distortion of separated signals is mainly caused
by signal leakage in the desired speech signal. Suppose that two
speakers are talking and one stops talking, as shown in Figure 3.
It may often be the case with ICA that signal leakage is observed
during that speaker’s silent period. The spectral parts enclosed
in the red box are instances of signal leakage. If such leakage is
very strong, it is difficult to determine the end of a speech signal.
An incorrect estimation of a period of speech would degrade the
recognition accuracy of ASR severely.

Figure 3: Leakage in spectrum for silent period in ICA

We used VAD that determines the period of utterance in order
to improve the performance of separation and recognition. Since
conventional VAD technologies assume quasi-stationary noises,
they are usually not applicable for a mixture of simultaneous
speech signals. The number of active speakers is used as VAD
information, since ADPF provides such information stably [22].
The region of silent periods is filled with silent spectrum obtained
in advance. If such a region is filled with 0 signals, it may not be
treated as silence by ASR with an acoustic model that is trained
with clean speech signals.

3.4. MFM Generation for an ICA System

MFM is generated by estimating reliable and unreliable compo-
nents of sounds separated by ICA. Since the influence of the sig-
nals leakage be weak, and we assume the error vector, ∆e, is not so



large. In addition, the function, F , can be assumed as smooth be-
cause our process of converting from spectrum to feature includes
only filtering, log scaling and absolution operations.

Let m(ω, t) be the observed spectrum at a microphone, and
x1(ω, t) and x2(ω, t) be SIMO signals of target source 1 and non-
target source 2, respectively. These SIMO signals are selected
from the elements of v1 and v2 by using interaural intensity dif-
ference and interaural phase difference.

x1(ω, t) denotes the signal selected from SIMO signals by us-
ing interaural phase and level difference. They satisfy the follow-
ing equation:

m(ω, t) = x1(ω, t) + x2(ω, t) (6)

x1(ω, t) = a1(ω)s
′
1(ω, t) (7)

x2(ω, t) = a2(ω)s
′
2(ω, t) (8)

where a1(ω), a2(ω) and s
′
1(ω, t), s

′
2(ω, t) are the estimated the

elements of mixing matrix and separated spectrums. Ideally,
m(ω, t) is separated as follows

m(ω) = W1(ω)s1(ω) + W2(ω)s2(ω) (9)

where W1(ω), W2(ω) are transfer functions.
The errors of separated spectrum are expressed as

s
′
1(ω, t) = α1(ω)s1(ω, t) + β1(ω)s2(ω, t) (10)

s
′
2(ω, t) = β2(ω)s1(ω, t) + α2(ω)s2(ω, t) (11)

where α1(ω), α2(ω), β1(ω), β2(ω) are the error coefficients in-
cluding scaling. Now the error of the estimated spectrum x1(ω, t)
is

e1(ω, t) =

„

α1(ω)a1(ω) − W1(ω)

«

s1(ω, t)

+β1(ω)a1(ω)s2(ω, t) (12)

In this paper, we find that spectral distortion is caused by signal
leakage and the distortion of original signal.

To estimate the error, we assume that the unmixing matrix ap-
proximates well to W (ω), and that the envelope of the power spec-
trum of leaked signal is similar to that of scaled x2(ω, t). That is,

„

α1(ω)a1(ω) − W1(ω)

«

s1(ω, t) ' 0 (13)

β1(ω)a1(ω)s2(ω, t) ' γ1x2(ω, t) (14)
e1(ω, t) ' γ1x2(ω, t) (15)

Thus, since the error can be regarded as a leak noise obtained
from non-target source, we generate MFMs, M , for the estimated
observed spectrum, x, with the estimated error spectrum, e as fol-
lows:

M =



1 |F (x) − F (x − e)| < θ
0 otherwise

(16)

In addition, the masks for time differential feature are generated as
follows:

M(k) =



1 |∆F k(x) − ∆F k−1(x − e)| < θ̂
0 otherwise

(17)

To simplify and thus speed up the estimate of the errors, we nor-
malize the difference ∆F with its maximum value.

These equations are based on the idea that if the error spectrum
distorts the separated signal, there is a difference between x and
x − e in feature domain. Even if the error spectrum is large, small
difference between x and x − e in feature domain does not affect
performance of speech recognition.

4. GSS-based Separation and MFM
Generation

In the GSS system, sound source separation is GSS with multi-
channel post-filter. The GSS system has been reported in the lit-
erature [13, 14, 23]. GSS with multi-channel post-filter is shown
in Figure 4.
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Figure 4: Overview of GSS with multi-channel post-filter

4.1. MFM Generation for GSS System

At first, we calculated leak noise by using input yn(k, l), out-
put ŝn(k, l), and the estimated background noise, bn(k, l), of the
multi-channel post-filter in frequency band k at frame l, where n is
an index of a source. The variables filtered by the Mel filter bank
are Yn(i, l), Ŝn(i, l), and BN(i, l) in filter bank i, respectively.
Leak noise Ln(i, l) is defined by

L(i, l) = Yn(i, l) − Ŝn(i, l) − BN(i, l). (18)

For each Mel-frequency band, the feature is considered reliable if
the ratio of the leak noise over the input energy is greater than a
threshold, TMFM . This assumes that the more noise present in a
certain frequency band, the lower the post-filter gain will be for
that band.

The MFM Mn(i, l), (i = 1, · · · , N) for the spectral feature
is defined as

Mn(i, l) =



1, Ln(i,l)
Yn(i,l)

< TMFM

0, otherwise
. (19)

The MFM Mn(i, l), (i = N + 1, · · · , 2N) is defined as

Mn(i, l) =

l+2
Y

t=l−2,t6=l

Mn (i, t) . (20)

5. Experiments and Evaluation
To evaluate efficiency of automatic MFM generation based on leak
estimation, we performed experiments on recognition of two si-
multaneous speech signals.



Figure 5: Robovie-
R2

Figure 6: Robovie-R2 in the experi-
ment room

5.1. Recording Conditions

We used Robovie-R2 for the experiments, with eight omnidirec-
tional microphones on the body symmetrically. The transfer func-
tion of robot’s body influences captured sound since microphones
are not in the air. The positions of the microphones are shown in
Figure 5. The distances between microphones 1 and 2, 1 and 3, and
1 and 5 are 25.6 cm, 18.8 cm, and 47.8 cm, respectively. For the
ICA system, a pair of upper front microphones (1 and 2) was used.
Simultaneous speech signals were recorded in a room, as shown in
Figure 6. Their reverberation time was about 0.35 seconds (RT20).
Japanese words were played simultaneously through loudspeakers
at the same distance from the robot. Locations varied over five
distances (at 50, 100, 150, 200, and 250 cm from the robot) and
three directions. Because the waveform from thedistance of about
130cm can be treated as a plane wave for the most distant pair
of microphones, we define 50 and 100 cm are near-field, and 150,
200 and 250 cm are far-field in this experiment. One loudspeaker
was fixed in front of the robot, and the other was placed at 30,
60, or 90◦ left of the robot. The volume of the loudspeakers was
set at the same level for all locations. 200 combinations of three
different words were played for each configuration. The words
were selected from 216 phonemically balanced words distributed
by ATR. In other words, our systems recognize three simultaneous
speech signals 200 times in each configuration.

5.2. Speech Recognition

Multiband Julius was used as the MFT-ASR. In the experiments,
we used a triphone acoustic model and a grammar-based language
model to recognize an isolated word. The triphone is an HMM
which has 3 states and 4 mixtures in each state, and trained on 216
clean phonemically balanced words distributed by ATR. The size
of the vocabulary was 200 words.

5.3. Configuration for Experiments

Parameters of our systems are determined experimentally. In ICA
system, the threshold θ = 0.92, and θ̂ = 0.05 in Equations 16 and
17. In GSS system, the threshold TMFM = 0.75.

5.4. Results

Figures 7 and 8 show word recognition rates for the ICA and GSS
systems, respectively. The horizontal axis indicates speakers’ po-
sitions, and the vertical one indicates word correct rates. For ex-
ample, “30 deg., and 50 cm” on the horizontal axis means that one
speaker is located 50 cm in front of the robot, and the other one is

located 50 cm away at 30◦ left of center.
The ICA-based MFM generation (the ICA system) improved

word correct rates by an average of 5.6%, and the GSS-based
MFM generation (the GSS system) improved word correct rates
by an average of 4.8%. The word correct rates of two simultane-
ous speech signals improved to an average of 67.8 and 88.0% for
the ICA and GSS systems, respectively.

5.5. Discussion

The ICA system worked better in the near field than in the far field,
because room transfer functions such as reverberation degraded
the separation performance of ICA. The effect created by the in-
tervals between the two speakers did not degrade the word correct
rates much for the ICA system. The optimized unmixing matrix
obtained by ICA is the reason for the system’s robustness with in-
tervals.

The GSS system worked better in the far field than in the
near field, because a large difference in the time delay of ar-
rival (TDOA) increases resolution of GSS. Narrow intervals be-
tween the speakers degraded the separation performance of GSS
and the multi-channel post-filter, because the difference in TDOA
decreased. GSS calculates the TDOA from locations of sound
sources using the geometric constraints of microphones and does
not take into consideration transfer functions of the body of the
robot. The unmixing matrix obtained by ICA estimates such body
transfer functions.

Some techniques which we used have limitations. In practi-
cal situations, the number and position of sources may vary. The
GSS system with sound source localization can deal with the sit-
uation. The GSS system with eight microphones can separate
up to eight sources, however, performance will decrease. On the
other hand, it is difficult for the ICA system to deal with the situ-
ation. It is better that the number of microphones corresponds to
the number of sources. Position of sources should be fixed while
the ICA system adapts to training data during a few seconds. In
this paper, we used simple missing data speech recognition with
hard masks. However, there are more advanced MFT techniques,
for example bounded marginalization, and the techniques may im-
prove our system. Although hard masks was more effective than
soft masks in our other experiments, there are possibilities of soft
masks improving performance. MFT techniques also have the lim-
itation. MFT cannot use orthogonal features since MFT should
generally use spectral features. To cope with the limitation, we
should improved spectral features or should develop MFM gen-
eration for mel-frequency cepstral coefficient which is commonly
used for ASR.

6. Conclusion
We presented two kinds of missing-feature approaches to separate
and recognize two simultaneous speech signals. The ICA system
uses two microphones for sound source separation. The GSS sys-
tem uses GSS, a kind of beam-former, for sound source separa-
tion with eight microphones. Both separated sounds are recog-
nized by MFT-ASR. These two systems were evaluated based on
rates of recognition of simultaneous speech uttered by two speak-
ers. We demonstrated that robot audition systems consisting of
blind source separation and MFT-based ASR with automatic MFM
generation recognized two simultaneous speech signals 5.6% and
4.8% better than conventional systems.

Since we focused on missing feature mask generation, we
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Figure 7: Recognition results with automatic MFM generation based
on ICA (ICA system)
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Figure 8: Recognition results with automatic MFM generation based
on multi-channel post-filter (GSS system)

conducted the experiments using a recognition task as simple as
possible. We are planning to conduct further experiments us-
ing more complicated tasks such as large-vocabulary continuous
speech recognition.
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