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Abstract
In this paper, we derive a probability model for interaural
phase differences at individual spectrogram points. Such
a model can combine observations across arbitrary time
and frequency regions in a structured way and does not
make any assumptions about the characteristics of the sound
sources. In experiments with speech from twenty speak-
ers in simulated reverberant environments, this probabilis-
tic method predicted the correct interaural delay of a signal
more accurately than generalized cross-correlation meth-
ods.

1. Introduction

The human ability to localize sound sources surpasses that
of even the best computer program, particularly in reverber-
ant environments. Sound source localization could allow
machine listeners to characterize and adapt to acoustic en-
vironments, and aid in filtering out unwanted sounds and
more cleanly recognizing speech. Furthermore, humans are
able to localize sound sources with just two sensors, while
machines generally require large microphone arrays. In or-
der to more accurately localize sound in reverberant en-
vironments, we propose a probability model for interaural
phase differences at individual spectrogram points based on
an empirical examination of measured binaural impulse re-
sponses.

This model considers time-frequency points in interau-
ral spectrograms individually, facilitating the localization of
multiple sources simultaneously. Even though each point
contains only a small amount of information, combining the
information at many points leads to accurate inferences of
the location of sound sources. Furthermore, the interaural
spectrogram, defined as the complex ratio between the spec-
trogram of the left and right ears, does not depend on any
specific properties of the sound source such as Gaussianity
or stationarity.

One problem that this approach addresses is the inherent
ambiguity in phase differences. The difference in phase be-
tween the left and right ears at any frequency is only defined
modulo2π, so that a given phase difference could be caused
by a number of delays between the two ears. A single de-

lay, however, leads deterministically to a single phase differ-
ence. Previous methods have generally attempted to convert
phase differences into delays, but we propose to model the
probability of any particular delay given an observed phase
difference, thus allowing the comparison of many different
delays.

We test our probability model for interaural phase dif-
ferences on the localization of single speakers in simulated
reverberant and additive noise situations. For comparison,
we also test the Phase Transform (PHAT), a generalized
cross-correlation method, on the same simulations and show
that our method outperforms PHAT on this task. We further
show that our method is robust to a mismatch between the
noise model and the observed noise distribution.

1.1. Previous work

There have been many previous efforts toward describing
a perceptually meaningful binaural localization function.
Knapp and Carter first introduced the generalized cross-
correlation in [1]. Their method produces a point estimate
of the time delay between two microphones by including a
weighting function in a cross-correlation calculation. Under
the assumption of stationary sources and uncorrelated noise
at the two ears, they derive a maximum likelihood estimate
of the delay. Another particularly useful weighting they in-
troduce is the Phase Transform (PHAT), which whitens the
two signals before cross-correlating them to provide a more
sharply peaked correlation.

Approaching the problem from a more perceptual ori-
entation, Stern and Trahiotis introduced a method for local-
izing sound sources in [2, 3]. They use cross-correlations
between the two signals in many different frequency bands
and then combine the estimates. The band limitation of the
signals makes phase ambiguities quite evident, but all of
the bands’ correlations align at the true delay. The idea of
coincident delays in the cross-correlation leads the authors
to design a “straightness” measure for scoring alignments
at different delays. Their straightness measure combined
measurements in each frequency band by multiplying their
correlations together, a procedure that can be justified when
considering the problem in a probabilistic framework such



as ours.
The classroom impulse responses we study were

recorded by Shinn-Cunningham et al. in [4], in which the
impulse responses were analyzed, along with the interaural
time delay and interaural intensity difference. These im-
pulse responses have been used for many experiments, in-
cluding an investigation of human spatial audio perception
[5] and neural modeling of binaural audition [6].

2. Probability model

For the purposes of deriving this model we will examine the
situation where one sound source arrives at two spatially
separate microphones or ears. Eventually this will gener-
alize to the assumption that only a single source arrives at
each time-frequency point in a spectrogram, but that differ-
ent points could contain different sources.

Denote the sound source ass(t), and the signals re-
ceived at the left and right ears as`(t) and r(t), respec-
tively. The two received signals will have some delay and
some gain relative to the source, in addition to a disruption
due to noise. For this model, we assume a convolutive noise
process, because it fits our empirical observations, it is easy
to analyze, and in general is it is very similar to the addi-
tive noise processes that other authors assume. The relation
between the various signals is then,

`(t) = a`s(t− τ`) ∗ n`(t) (1)

r(t) = ars(t− τr) ∗ nr(t). (2)

Taking the ratio of the Fourier transform of both equations
gives,

L(jω) = ea−jωτR(jω)N(jω), (3)

whereτ = τ` − τr,N(jω) = N`(jω)
Nr(jω) , anda = log a`

ar
. This

equivalence assumes thatτ is less than the length of the
window over which the Fourier transform is taken, a condi-
tion easily met for dummy head recordings with moderately
sized Fourier transform windows. For example, in our ex-
periments the maximum delay was 0.75ms, and the window
length was 32ms.

When localizing a signal, our goal is to infera andτ
from the observed signalsR(jω) andL(jω), while avoiding
distraction from the noiseN(jω). In order to accomplish
this goal, however, it is necessary to study the behavior of
the noise in both magnitude and phase for knowna andτ .
It is possible to separate the effects of phase and magnitude
noise because for a givena andτ , the noise is described by

log |N(jω)| = log |L(jω)| − log |R(jω)| − a (4)

∠N(jω) = ∠L(jω)− ∠R(jω) + ωτ + 2kπ, (5)

wherek comes from the inherent2π ambiguity in phases.

2.1. Data

In order to study this noise, we simulated speech in ane-
choic, reverberant, and additive noise situations by con-
volving anechoic speech samples with binaural impulse re-
sponses. We used speech from the TIMIT acoustic-phonetic
continuous speech corpus [7], a dataset of utterances spoken
by 630 native American English speakers. Of the 6300 ut-
terances in the database, we chose 20 at random to use in
our evaluation.

The anechoic binaural impulse responses came from Al-
gazi et al. [8], a large effort to record head-related transfer
functions for many different individuals. Impulse responses
measurements were taken over the sphere surrounding sub-
jects’ heads at 25 different azimuths and 50 different ele-
vations. The measurements we used were for the KEMAR
dummy with small ears, although the dataset contains im-
pulse responses for around 50 individuals.

To compare with the anechoic impulse responses, we
used impulse responses recorded in a real classroom made
by Shinn-Cunningham et al. [4]. These measurements were
also made on a KEMAR dummy, although a different actual
dummy was used. Measurements were taken at four dif-
ferent positions in the classroom, three distances from the
subject, seven directions, and three repetitions of each mea-
surement. We used the measurements taken in the middle
of the classroom at a distance of 1 meter from the subject.

2.2. Observations

See Figure 1 for some examples of our observations of the
noise. These measurements were simulated from the same
speech segment in three different conditions. First is the
anechoic condition created by passing the speech through
the anechoic impulse responses. Second is an additive noise
condition, created by first passing the speech through the
anechoic impulse responses and then adding independent,
equal-power, speech shaped noise to each ear. The third
condition is the reverberant environment, created by passing
the speech through the classroom impulse responses.

The top plots show two-dimensional histograms of the
phase noise at interaural spectrogram points as a function of
their frequency. One can see that the noise is unimodal, with
a mean and variance that are relatively consistent across
frequencies. The highest frequencies show some deviation
from this standard because of the well-studied notch in in-
teraural magnitude caused by the pinna. We gloss over this
detail and model the noise as identically distributed across
frequencies.

The middle plots are similar to the top plots, but show
magnitude noise in dB as a function of frequency. Again,
the noise appears unimodal, with a consistent mean and
variance across frequencies except for the notch at high fre-
quencies.
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Figure 1: Two-dimensional histograms of noise in anechoic, additive, and reverberant situations for0◦ azimuth/elevation.
Top: plotted as phase angle vs frequency. Middle: plotted as magnitude (in dB) vs frequency, Bottom: plotted in the complex
plane. Note that columns one and two are derived from the same KEMAR, but the third column involves a different KEMAR
with different pinna asymmetries.

The bottom plots show two-dimensional histograms of
noise observations in the complex plane, i.e. the joint dis-
tribution of phase and magnitude. These histograms col-
lapse the noise across all frequencies, and it can be seen
that the distribution in the complex plane is unimodal, has
much heavier tails than a Gaussian, and is located around
the point1 + 0j, i.e. magnitude 1, angle 0.

2.3. Noise model

These observations indicate that to a first approximation, we
can consider all interaural spectrogram points to be identi-
cally distributed. We make the further assumption that the
errors at all interaural spectrogram points are independently
distributed. The observations also indicate that the magni-

tude noise is well described by a lognormal distribution, and
that the phase noise is well described by a circular probabil-
ity distribution akin to the von Mises distribution.

For the rest of the paper, we will concern ourselves with
the phase of the noise distribution, ignoring the magnitude.
We now describe the model for the independent, identically
distributed interaural phase measurements. For any single
point in time and frequency, let

∆φ ≡ ∠L(jω)− ∠R(jω) (mod 2π). (6)

Thenp(∆φ | τ) is peaked atωτ and periodic in2π, leading
to the approximation

p(∆φ | τ) = exp

(
K∑

k=0

ak cosk(∆φ− ωτ)

)
. (7)
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Figure 2: A histogram of measured noise angles in a re-
verberant environment with successive maximum entropy
approximations superimposed.

By including more terms, the approximation can become as
accurate as desired. This function is the maximum entropy
distribution for a probability periodic in2π with the firstK
moments specified.

It is also easy to match this model to observations by
constructing a histogram of angles in[0, 2π), taking the log-
arithm of the occupancies, and then taking the firstK terms
of the Fourier series. Sincecos(Kθ) can be expressed as a
Kth order polynomial incos(θ), the Fourier series represen-
tation is equivalent to the maximum entropy representation.
See Figure 2 for an example of such a histogram and suc-
cessive approximations to it.

Since the noise is independent and identically dis-
tributed for all points in the spectrogram, the joint proba-
bility of observations at multiple points is the product of
their marginal probabilities.

p(∆φ(ω, t) | τ) =
∏

i

p(∆φ(ωi, ti) | τ). (8)

To combine the estimates of an entire spectrogram frame,
then, one would need to multiply the probabilities of each
point in that frame,

p(∆φ(t) | τ) =
N/2∏
n=0

p(∆φ(2πjn/N, t) | τ). (9)

Similarly, to combine the estimates of a frequency band over
time, one could multiply acrosst, holdingω constant. But,
the use of this probability model allows for the flexibility to
combine probabilities across arbitrary regions of the spec-

trogram, including multiple frames and non axis-aligned re-
gions.

In our experiments, we show that this probability model
can be applied to the same problems previously attacked
with the Generalized cross-correlation (GCC). In particular,
we compare the performance of our model to that of the
Phase Transform (PHAT) in terms of mean squared devia-
tion from the true delay.

Using the same notation as above, the GCC assigns a
score to each possible delay based on a weighted correla-
tion. By taking the Fourier transform, this becomes

g(τ) =
∑
ω

ψ(jω)L(jω)R∗(jω)ejωτ . (10)

The particular values of theg(τ) function do not matter, as
only its maximum is used to choose the most likely delay,
τ̂ = arg maxτ g(τ). One particular instance of the GCC is
the PHAT, in which the weighting factorψ(jω) cancels the
magnitudes of the left and right signals,

p(τ) =
∑
ω

1
|L(jω)||R(jω)|

L(jω)R∗(jω)ejωτ . (11)

This whitening works well for broadband signals, but am-
plifies background noise when the target signal is in fact
narrowband.

3. Experiments

To compare the performance of this probabilistic framework
to GCC methods, we used them to localize single sources
in simulated reverberation and additive noise. Twenty ut-
terances from the TIMIT dataset were used and the errors
averaged across utterances. Each method was used to esti-
mate the interaural delay and the results were compared on
the mean squared distance between the true values and these
estimates.

The test in reverberation was performed using the class-
room BRIRs from [4]. In particular, we used all of the
recordings taken with the dummy head situated in the mid-
dle of the classroom with the sound source 1 meter from the
head. This resulted in a total of 21 recordings from 7 differ-
ent directions, from straight ahead to all the way to the right
in increments of 15◦.

The test in additive noise was performed using the ane-
choic HRIRs from [8]. In particular, we used the impulse
responses at 0◦ elevation and between straight ahead and
all the way to the right for a total of 13 recordings from
13 different directions. These directions were spaced more
densely in front of the subject and more sparsely toward the
side. The added noise was speech shaped, based on the aver-
age spectrum of the anechoic recordings of all of 20 of the
utterances. The signal to noise ratio of the additive noise
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Figure 3: Performance of the three localization methods in different noise situations. The three methods are PHAT, the
probabilistic phase method using a distribution for reverberant noise, and the probabilistic phase method using a distribution
for the anechoic situation.

was 10 dB (relative to the average of both ears), the mea-
sured direct-to-reverberant ratio in the classroom BRIRs.

The performance of three localization methods was
measured in these two noise situations. All three methods
give more accurate estimates when information is pooled
over more observations, so the methods were compared
when varying the amount of pooling. Since PHAT gives
a single point estimate, pooling amounts to averaging the
point estimates together. For the probabilistic estimates,
pooling means multiplying the likelihoods. Two probabilis-
tic methods were tested; for the first, the noise model was
based on the reverberant recordings, while the second used
a noise model based on the anechoic recordings.

The results of these experiments can be seen in Figure 3.
The figure plots the mean squared error of the three local-
ization methods as a function of the amount of pooling in
the two noise situations. Performance on sounds straight
ahead and fully to the right are plotted, intermediate angles
have intermediate results and are omitted for clarity. As can
be seen in the figure, all of the methods perform better with
more pooling and, for short pooling intervals, they perform
comparably to one another. With larger amounts of pooling,
however, the probabilistic methods outperform PHAT. The
behavior of the phase noise under additive noise conditions
is similar enough to convolutive noise that the probabilis-
tic methods still outperform PHAT. Curiously, localization
at 90◦ is better than at0◦ in additive noise, which may be
related to the SNR advantage of the better ear compared to
the average over both ears.

Matching the noise model to the actual noise proper-

ties gives the best performance, shown by the “reverberant
model” traces in the left plot. However, even for a mis-
matched model (e.g. the “anechoic model” in the same
plot), performance is degraded by only a small margin,
and only for moderate pooling intervals. For mixtures of
sources, it may become more important to use well-matched
estimates of phase uncertainty to make accurate inferences
of the azimuth associated with each spectrogram point.

4. Conclusions

We have introduced a probability model for the phase noise
in interaural spectrograms. This noise model was developed
through an examination of binaural recordings in anechoic
and reverberant environments. The noise is zero mean, uni-
modal, and can be treated as independent for different spec-
trogram points. Thus the joint distribution of the noise in
a region of a spectrogram is the product of the marginal
noise distribution at each spectrogram point, meaning that
posterior distributions of azimuth based on arbitrary sets of
samples may be obtained by simply multiplying together
the azimuth distributions derived from each point. This is
essentially the “straightness” weighting of [3], but arrived
at from probabilistic principles.

There are a number of features of this model that rec-
ommend it over a traditional generalized cross-correlation
approach. First, in tests of simulated speech in reverber-
ant environments, the probabilistic approach estimated the
true delay with less mean squared error than PHAT. Second,
even in additive noise, the situation for which GCC methods



were designed, the probabilistic approach performs at least
as well, if not better than PHAT. Third, the probabilistic ap-
proach makes no assumptions about the sources involved.
And fourth, the probabilistic approach lends itself to local-
izing multiple source simultaneously because of its ability
to aggregate information over arbitrarily shaped regions of
the spectrogram.

In the future, we plan to integrate interaural magnitude
differences into this localization system. We are also work-
ing on incorporating the entire model into an EM frame-
work for localizing multiple sources. The basic idea of the
EM approach to this problem is as follows. Since arbitrary
time-frequency regions can be included in the calculation
of probabilities under this model, one could group only the
spectrogram points dominated by a single source into a cal-
culation of the probability of the interaural delay of that
source. Then with an estimate of the delays of the sources,
one could assign each spectrogram point to each source in
proportion to its probability of having originated from that
delay.
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