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Abstract

Automatic speech recognition (ASR) is essential for a robot to
communicate with people. One of the main problems with ASR
for robots is that robots inevitably generate motor noises. The
noise is captured with strong power by the robot’s microphones,
because the noise sources are closer to the microphones than the
target speech source. The signal-to-noise ratio of input speech be-
comes quite low (less than 0 dB). However, it is possible to esti-
mate the noise by using information on the robot’s own motions
and postures, because a type of motion/gesture produces almost
the same pattern of noise every time it is performed. This paper
proposes a method to improve ASR under motor noises by using
the information on the robot’s motion/gesture. The method selec-
tively uses three techniques – multi-condition training, maximum-
likelihood linear regression (MLLR), and missing feature theory
(MFT). The former two techniques cope with the motor noises by
selecting the noise-type-dependent acoustic model corresponding
to a performing motion/gesture. The last technique extracts un-
reliable acoustic features in an input sound by matching the in-
put with a pre-recorded noise of the current motion/gesture, and
masks them in speech recognition to improve ASR performance.
Because, in our method, ASR technique selection affects the sys-
tems performance, we evaluated the performance of three ASRs
for each noise type of a robot’s motion/gesture to obtain the best
technique selection rule. The preliminary results of isolated word
recognition showed the effectiveness of our method using the ob-
tained technique selection rule.

1. Introduction
To make human-robot communication natural, it is necessary for
the robot to recognize speech even while it is moving and perform-
ing gestures. For example, a robot’s gesture is considered to play a
crucial role in natural human-robot communication [8, 9]. In addi-
tion, robots are expected to perform tasks by physical actions [13]
to make a presentation [10]. If the robot can recognize human in-
terruption speech while it is executing physical actions or making
a presentation with gestures, it would make the robot more useful.

ASR by robot is difficult, however. This is because motor
noises are inevitably generated while in motion. In addition, the

power of the motor noises is stronger than that of target speech be-
cause the motors are closer to the robot’s microphones. The motor
noises change irregularly so we cannot obtain satisfactory perfor-
mance from ASR using a conventional noise adaptation method.
So far there has not been much research on speech recognition un-
der noises of robot motion.

One of the important differences between environmental
noises and robot motor noises is that a robot can estimate its motor
noises because it knows what type of motion and gesture it is per-
forming. Each kind of robot motion or gesture produces almost the
same noises every time it is performed. By recording the motion
and gesture noises in advance, the noises are easily estimated.

By using this, we introduce a new method for ASR under robot
motor noise. Our method is based on three techniques, namely,
multi-condition training, maximum-likelihood linear regression
(MLLR) [5], and missing feature theory(MFT) [7]. These meth-
ods can utilize pre-recorded noises as described later.

Since each of these techniques has advantages and disadvan-
tages, whether it is effective depends on the types of motion and
gesture. Thus, just combining these three techniques would not be
effective for speech recognition under noises of all types of mo-
tion and gestures. We therefore propose to selectively use those
methods according to the types of motion and motor noises. The
result of an experiment of isolated word recognition under a va-
riety of motion and gesture noises suggested the effectiveness of
this approach.

In what follows, Section 2 discusses which of the existing
noise-robust ASR techniques would be effective for robot motor
noises, and Section 3 explains our method for coping with robot
motor noises, with details of how we apply MFT applied using pre-
recorded noises. Section 4 describes the isolated word recognition
experiments, and Section 5 discusses the results, before summa-
rizing and mentioning future work in Section 6.

2. Noise-robust automatic speech recognition
So far, a lot of noise-robust ASR techniques have been proposed.
This section discusses which techniques are suitable for ASR un-
der robot motor noises.

A common technique ismulti-conditiontraining. It trains the
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Figure 1:Block diagram of the proposed method

acoustic model on speech data to which noises are added. This
technique improves ASR performance when an input signal in-
cludes the noises added in training the acoustic model. This has
a characteristic that it is easy to cope with stationary noises rather
than non-stationary ones. So, we expect that this is effective for
speech recognition in performing a motion or a gesture that pro-
duces stationary noises.

MLLR also improves the robustness of ASR by using an adap-
tation technique with the affine transform. MLLR adaptation for a
multi-condition acoustic model is more effective in speech recog-
nition than that for an acoustic model trained on clean speech,
because the performance of speech recognition using the multi-
condition acoustic model is originally higher. Actually, we con-
firmed this through a preliminary experiment. Preparing multi-
condition acoustic models for all kinds of motor noises without
using MLLR would be time-consuming. In addition, it might suf-
fer from overfitting.

Missing Feature Theory (MFT)[7] is proposed to cope with
noisy speech input. When there are noises, some areas in the
spectro-temporal space of speech are unreliable as acoustic fea-
tures. Ignoring reliable areas or estimating features in the unreli-
able parts using reliable areas make it possible to perform noise-
robust speech recognition. As a similar approach, multi-band ASR
[11, 12] has been proposed. This method uses HMMs for each
sub-band, and obtains integrated likelihood by assigning smaller
weights to unreliable sub-bands. In this paper, when we use the
term MFT, it includes the multi-band ASR method.

MFT-based methods show high noise-robustness against both
stationary and non-stationary noises when the reliability of acous-
tic features is estimated correctly. One of the main issues in apply-
ing them to ASR is how to estimate the reliability of input acoustic
features correctly. Because thesignal-to-noise ratio (SNR)and the
distortion of input acoustic features are usually unknown, the relia-
bility of the input acoustic features cannot be estimated. However,
because pre-recorded noises are available in recognition, the relia-
bility estimation of the input acoustic features is easier even when
the noise power is high. So, we think that MFT is more suitable to
deal with the non-stationary noises from the robot’s motors.

Spectral Subtraction (SS)[6] is one of the common methods
to suppress noises. Itoet al. proposed to apply SS to cope with
the robot’s own motor noise [1]. Their method estimated the mo-
tor noise from the robot’s joint angles with a neural network, and
performed SS using the estimated noise. One problem with this
approach is that ASR performance degraded when the noise is not
well-estimated. In addition, when the noise estimation fails, the
degradation is worse than that in the case of MFT approaches,
because SS modifies acoustic feature directly. Since the same
types of motions do not always generate the exactly-identical mo-
tor noises, it is difficult to estimate the motor noises well enough
for SS to cope with noises properly. So, the SS-based method is
not suitable for the robot.

When multiple microphones are available, it is possible to use
speech separation techniques to extract the target speech such as
Beam Forming (BF)[14], Independent Component Analysis (ICA)



[15], andGeometric Source Separation (GSS)[2]. BF is a com-
mon method to separate sound sources by using multiple micro-
phones. However, in the cases of conventional BF approaches,
separate speech is distorted by noises and inter-channel leak en-
ergy. This degrades ASR performance. Some BF methods with
less distortion such as adaptive beamforming require a lot of com-
putational power, which makes real-time sound source separation
difficult. ICA is one of the best methods for sound source separa-
tion. It assumes that sound sources are mutually independent and
the number of sound sources equals to that of microphones. These
assumptions are, however, too strong to separate sound sources
in the real world. In addition, it has some other problems called
permutation problem and scaling problem that are hard to solve.
In GSS, the limitation of the relationship between the number of
sound sources and microphones is relaxed. It can separate up to
N − 1 sound sources whereN is the number of microphones
by introducing “geometric constraints” obtained from the loca-
tions of sound sources and microphones. Actually, Yamamotoet
al. reported a robot audition system that recognized simultane-
ous speech by combining of GSS and MFT-based ASR [2]. They
showed the effectiveness of GSS as well as MFT-based ASR with
automatic reliability estimation using the inter-channel leakage en-
ergy. However, in GSS, errors in geometric constraints affect the
performance badly, while microphone and sound source locations
generally include some errors in measurement and localization.

Multi-channel approaches are effective when sound source
separation works properly. However, every approach generates
separation errors more or less. In addition, the size of a total sys-
tem tends to be large. This means that the number of parameters
for the system increases and more computational power is required
by the system. Because the room and computational power a robot
can use are limited, they are hard problems when being applied to
a robot. Therefore, we focus on single channel approaches in this
paper.

Consequently, we use multi-condition acoustic model training,
MLLR, and MFT. The details of our utilization of these techniques
are described in the next section.

3. Automatic speech recognition based on
missing feature theory for motor noises

3.1. Selective application of noise-robust ASR techniques

This section describes the proposed method using multi-condition
acoustic model training, MLLR, and MFT to cope with noises gen-
erated by a robot’s motion. Figure 1 illustrates the block diagram
of the proposed method.

As acoustic features, we use log-spectral features, not mel-
frequency cepstrum coefficient (MFCC). This is because log-
spectral features are suitable for MFT as explained later. The
acoustic model is trained on the speech to which noises of all kinds
of motions and gestures are added.

For each type of motion, an MLLR transformation matrix for
the multi-condition acoustic model is learned using some amount
of speech data. When recognizing speech contaminated by a mo-
tor noise, the MLLR transformation matrix for the corresponding
motion type is applied.

In addition, the pre-recorded noise for the motion is selected
from pre-recorded noise templates. The pre-recorded noise is
matched to the target sound which is a mixture of speech and motor
noise, and which frequency band of which time frame is damaged
by the motor noise for determining weights for MFT. The details

of this process is described later.
As discussed in the previous section, these three techniques

have advantages and disadvantages. Multi-condition training
would be effective for all noises, but it might not be sufficient
to adapt to each noise. MLLR enables adaption to each kind of
noise, but, since MLLR’s transform stays the same for all intervals
of each speech, it might not work well for noises that change irreg-
ularly. MFT is expected to work well for such irregular noises, but
if the difference between pre-recorded noise and the noise included
in the target speech is big, MFT is not effective.

We therefore suspect that each of these are suitable for some
types of noises and not suitable for other noises. We apply these
techniquesselectivelyaccording to the types of noises (Figure 2).
When the robot is performing a motion or a gesture and one of
the techniques has been found to be effective for the noise of that
motion/gesture, that technique is applied. By this selective ap-
plication, we can avoid ASR performance degradation caused by
applying techniques that are not suitable for the noise.

3.2. Missing feature theory for motor noises

Here we describe in detail how we apply MFT by using pre-
recorded noises.

As stated earlier, throughout our method, we use log-spectral
features as acoustic features [3, 4]. The reason for this is as fol-
lows. Motor noise to cope with are additive noises. To use the
MFT for additive noises directly, we use log-spectrum acoustic
feature vectors. A log-spectral acoustic feature vector is normal-
ized in the log-spectrum domain while MFCCs are normalized
in the cepstrum domain. The performance of ASR with the log-
spectral acoustic feature vector is equivalent to that with MFCC
shown in Section 4. So, we use the log-spectral acoustic feature
vectors.

In MFT, reliable features of the acoustic feature vector have
large weight values and unreliable features have small weights.
The weights affect the acoustic likelihood as described in [3, 4].
When not using MFT, the acoustic likelihood of a phoneme model
qk and the acoustic feature vectorst is defined by

L(st|qk) =
N

X

i=1

L(sti|qk). (1)

In MFT, using a weightωi, the acoustic likelihood is defined by

L(st|qk) =

N
X

i=1

ωiL(sti|qk). (2)

Weights for MFT are determined based on the noise level. Let
the log-spectrum of the estimated noise ben(f, t), wheref is the
feature index in the log-spectrum acoustic feature vector, andt is
the time frame. Because the range of log-spectrum is wide, we use
the sigmoid function to limit the range of log-spectrum from 0 to
1. The average noise power at each frame is subtracted from the
acoustic feature vector in order not to bias the value of output from
the sigmoid function.

F is the number of dimensions of acoustic feature vector.

n′(f, t) = n(f, t) − 1

F

F
X

g=1

n(g, t) (3)
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Figure 2:Robust ASR technique selection according to the types of noise

Next, n′(f, t) is inputted to the sigmoid function. The relia-
bility is defined by

ω(f, t) = 1 +
α

1 + exp(n′(f, t))
(4)

whereα is a parameter to represent the sharpness of the reliabil-
ity function ω. When theα is large, the difference between the
acoustic feature vectors becomes large, andvice versa. ω is nor-
malized so that the sum of the weights at a frame can be equal to
the number of dimensions described in [3, 4]. This normalization
suppresses the change in optimized values of parameters such as
insertion penalty. The normalizedω is used for MFT.

When we use a multi-condition acoustic model, the station-
ary noises are incorporated into the acoustic model. We there-
fore apply MFT only when the estimated noise is stronger than an
experimentally-defined thresholdH.

When the types of motions are the same, the corresponding
motor noises have similar spectral features. We recorded the noises
of all motions beforehand. These noises are used as noise tem-
plates. We used the following method to match the noise templates
and the target noises. Note that the noises contained in the target
sound (a mixture of speech and noises) are called the target noises
in this paper. TheN sample average of the difference between the
noise template and the target noiseD(s) is defined by

D(s) =
1

N

N
X

n=1

|T(s)n − Rn|. (5)

where T and R are a noise template, and a target noise, re-
spectively.T(s) or T(−s) means the acoustic feature vector
shifted forward or backward ats samples.R is obtained as an
acoustic signal including no speech data.R is extracted manually
in this paper.

The matchedsm is defined by

sm = argmin
s

D(s). (6)

The acoustic features ofT(sm) are sent to MFT weight calculation
asn(f, t) in Eq. (3) with time shift informationsm.

4. Experiment
We conducted an experiment to investigate the effectiveness of the
proposed method. We used the Honda Humanoid Robot ASIMO.

ASIMO has two microphones mounted on its head. We made eval-
uations using the data recorded from the left microphone.

The data were recorded in an anechoic room. This is because
we wanted to avoid the effect of room reverbaration and other en-
vironmental noise sources so that we can verify the efficacy of our
proposed method, that is, to cope with the additive motor noises.

The data contain the speech signal recorded in the condi-
tion where distance from the speech source to the microphone
is with switching off ASIMO’s motors. We used the ATR
216 phonetically-balanced word set and conducted isolated word
recognition experiments. There are 25 speaker’s data in an ATR
216 phonetically-balanced word set and 1 speaker’s data consist
of 216 Japanese word utterances. The duration of 1 word utter-
ance is about 1.5 to 2 second. The speech data contains speeches
of 25 speakers (12 males and 13 females). The acoustic model
was trained on the data of 22 speakers, (10 males and 12 females).
The unsupervised MLLR is applied to adapt to noises. The test
set consists of speeches of 3 speakers (2 males and 1 female).
This set is different from the training set. The noise data con-
tain 34 kinds of noises: motor noise when ASIMO is not moving,
gesture noises, noises when ASIMO is walking, and others. The
SNR of each condition and motion pattern is shown in Table 2.
The multi-condition acoustic model is trained on speech data to
which 34 kinds of noises are added. We also used these 34 kinds
of noises for the recognition experiment. The noises of these mo-
tions were recorded several times, and the noises for evaluation,
multi-condition acoustic model training and template for match-
ing are mutually exclusive.

We compared the speech recognition performances in the six
conditions shown in Table 1. Since acoustic models with multi-
condition training had been found effective by our preliminary ex-
periment, we used them for all conditions. MLLR (all) means
supervised MLLR for the noises of all 34 types of motions, and
MLLR (each) means supervised MLLR for the noise of each type
of motion. In condition C, the weights for MFT in this condition
were determined by the average of the noise over time; that is, the
weights were the same for all time frames. On the contrary, in con-
dition F, the weights were computed for each time frame using the
estimated noise. We also tested SS for reference. In SS, noises are
estimated by the same matching algorithm as used for MFT. Since
the application of MFT without MLLR resulted in worse perfor-
mance than other conditions, we do not show the result of those
conditions.



Table 1:Experimental Conditions

Condition A B C D E F
Multi-condition X X X X X X
MLLR (all) X X
MLLR (each) X X X
MFT X X
SS X

Table 2:Signal-to-noise ratio and word accuracy

Motion Pattern SNR(dB) Word Accuracy (%) Best
A B C D E F method

Motor noise w/o motion 8.93 77.93 77.01 76.23 81.02 80.25 80.09 D*

Gesture Right hand (1) 6.06 77.31 77.47 74.85 77.93 69.60 75.77 D
Right hand (2) 5.13 74.54 72.53 73.61 73.46 72.22 75.31 F
Right hand (3) 6.76 77.78 77.47 76.85 77.78 77.93 77.62 A or D
Right hand (4) 6.99 77.93 76.85 75.93 78.40 75.62 77.62 D
Right hand (5) 6.96 77.93 77.01 78.55 77.47 73.61 79.32 F
Left hand (1) 6.58 75.31 74.38 73.92 75.00 68.67 75.31 A or F
Left hand (2) 6.16 73.46 72.99 72.69 73.15 70.22 72.99 A
Left hand (3) 6.90 76.85 76.39 77.62 77.93 77.16 79.32 F*
Left hand (4) 6.39 77.31 76.08 75.00 76.85 76.08 78.86 F
Left hand (5) 7.11 78.09 77.31 75.46 77.93 72.38 76.70 A
Both hands (1) 4.31 70.83 70.52 70.06 72.07 66.51 72.99 F
Both hands (2) 5.31 71.30 70.52 68.83 71.14 67.13 69.60 A
Both hands (3) 5.09 71.60 69.75 69.91 71.30 68.67 71.91 F
Both hands (4) 5.54 72.38 70.83 72.53 72.84 70.22 73.92 F
Both hands (5) 6.39 75.00 74.54 73.15 75.46 71.14 75.31 D
Head (1) 7.01 77.62 76.23 70.22 77.62 74.07 73.30 A or D
Head (2) 7.39 74.07 73.15 69.60 75.15 74.85 72.99 D
Head (3) 7.54 75.15 73.77 73.92 75.62 75.77 76.85 F
Head (4) -0.13 66.82 65.43 64.51 68.36 65.74 67.13 D
Head (5) -0.42 66.05 64.66 65.12 66.67 63.58 67.28 F
Head and hands (1) 2.45 65.74 65.12 63.27 64.97 62.81 64.51 A
Head and hands (2) 3.11 66.51 64.97 63.12 66.20 60.34 63.89 A
Head and hands (3) 6.33 74.54 73.77 74.07 75.15 72.38 76.39 F
Head and hands (4) 4.76 73.15 71.91 71.76 70.99 70.06 72.84 A
Bow 7.12 73.30 73.77 69.75 75.15 69.44 70.52 D*

Walking Pattern (1) -5.81 60.65 58.80 62.35 61.11 61.73 63.43 F
Pattern (2) -7.06 59.88 59.26 55.86 59.41 52.93 57.87 A
Pattern (3) -4.24 67.75 65.90 64.97 68.36 63.43 65.90 D
Pattern (4) -4.23 70.37 68.98 67.13 68.83 64.51 69.14 A
Pattern (5) -4.16 66.51 65.59 64.81 66.98 58.80 67.13 F
Pattern (6) -4.85 66.82 64.66 63.43 66.51 58.33 64.51 A
Pattern (7) -3.77 70.37 68.98 67.13 68.83 64.51 69.14 A
Pattern (8) -4.11 65.90 64.81 64.81 66.67 60.49 65.59 D

* shows the best method is better than A with the significance levelp < 0.05.

Table2 shows the experimental results. Conditions A, D, and
F give better performance. In addition to multi-condition train-
ing, MLLR(each) and MFT are found effective for certain kinds
of noises. On the contrary, MLLR(all) and SS are found to be not
effective.

5. Discussion

Based on the experimental results, we can consider it possible to
improve speech recognition performance by selecting condition A,
D, or F according to the types of motion/gesture. This selective
application of noise-robust techniques would perform better than
employing a fixed strategy, that is, using one of the conditions of



A, D, and F for all types of noises.
Although applying MLLR to each noise type and applying

MFT may seem effective for certain kinds of noises, the improve-
ment is rather small. We suspect that this is because the acoustic
model based on multi-condition training is already well adapted
to most of the noise types. The noises which were used in multi-
condition training and the noises added to the target speech were
recorded in the exact same environment. This is not the case, how-
ever, in robot speech recognition in a real environment where there
is reverberation and the distance between the human speaker and
the robot changes. We think if the environment is different, acous-
tic models obtained by multi-condition training is less effective
and MLLR and MFT would achieve a more statistically signigi-
cant improvement in ASR performance.

6. Summary and future work
In this paper, we have proposed an automatic speech recognition
method that copes with a robot’s own motor noises. In order to
improve ASR under a robots’ own motor noises, our method used
three techniques, that is, multi-condition training, MLLR adapta-
tion, and the missing feature theory. In applying the missing fea-
ture theory, automatic estimation of unreliable acoustic features
is a main issue. Our method solved this problem by utilizing in-
formation on a motion pattern obtained from a robot controller
and a pre-recorded motor noise corresponding to the motion pat-
tern. Also, it has another new feature that it selectively applies
those three noise-robust techniques to according to the types of
noises. The results of a preliminary experiments suggested that
this method is effective.

For further improvement in ASR for a robot with motor noises,
we still need to solve several problems. We should confirm the
effectiveness of our method in a real environment with reverbera-
tion and in a dynamically-changing environment as mentioned in
Sec. 5. In addition, it is required to improve noise estimation for
the better weighting in MFT. We are also considering combining
our method with sound source separation by using multi-channel
microphones embedded in the robot.
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