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Abstract

We present a novel architecture for word-spotting which is
trained from a small number of examples to classify an utter-
ance as containing a target keyword or not. The word-spotting
architecture relies on a novel feature set consisting of a set of
ordered spectro-temporal patches which are extracted from the
exemplar mel-spectra of target keywords. A local pooling op-
eration across frequency and time is introduced which endows
the extracted patch features with the flexibility to match novel
unseen keywords. Finally, we describe how to train a support
vector machine classifier to separate between keyword and non-
keyword patch feature responses. We present preliminary re-
sults indicating that our word-spotting architecture achieves a
detection rate of 70-95% with false positive rates of about 0.25-
2 false positives per minute.
Index Terms: word-spotting, spectro-temporal patches, sup-
port vector machines

1. Introduction
In this work, we present a novel architecture for performing
“word-spotting”. Given an utteranceU , the goal of word-
spotting is to detect whether a certain target wordw is present
in the utterance or not. Applications for this task are numerous,
ranging from audio information retrieval to speech surveillance
to general speech recognition itself.

Our system requires only a few (about 20) positive exem-
plars of the target word, and about 5 minutes of speech in which
the target word is not present. From this data our system trains
a discriminative support vector machine classifier [9], which is
able to classify whether a windowW of sound contains the tar-
get word or not. By sliding this windowW across the utterance
and classifying each portion, the entire utterance can be classi-
fied as containing the target word or not.

2. Motivation
Our motivation in this work is to explore one of the central is-
sues at the heart of auditory processing, namely how to builda
model of a keyword that is simultaneouslyselective andinvari-
ant:

On the one hand, a word-spotting system requires a set of
auditory features that areselective for the target word. These
features allow the system to respond selectively if the target
word occurs, and not otherwise.

On the other hand, the system must also beinvariant to

the types of variations which typically occur to the target word,
such as variations in duration, pitch, speaker, noise, and chan-
nel.

Most modern word-spotting algorithms [1, 2, 3, 4] address
this trade-off through the currently dominant “HMM-MFCC”
paradigm: frame-based Mel-frequency cepstral coefficients are
extracted as speech features, which are then used to train hidden
markov models for the keywords of interest.

In this paradigm, MFCCs provide a mechanism for achiev-
ing spectral selectivity: each spectral frame is projected onto
a low-order DCT basis representing different types of spectral
modulations. The incorporation of∆ and∆∆ cepstral coeffi-
cients also adds temporal sensitivity to the MFCC feature set.

The HMM component, on the other hand, serves as a mech-
anism for achieving invariance: specifically, the use of sev-
eral Gaussian mixture components per state models the spec-
tral variations due to coarticulation, pitch changes, or formant
changes which routinely occur during different instantiations of
the target word. In addition, the forward-backward dynamic-
time-warping (DTW) component of the HMM is a mechanism
for modelling the temporal duration changes of the keyword.

Unfortunately, there are many problems associated with the
HMM-MFCC framework: firstly, as we will argue in the next
section, while MFCC features are selective for spectral features,
they are not explicitly selective for a host of other important
temporal and spectro-temporal phenomena in speech which oc-
cur over longer time-scales; secondly, HMMs usually need a
large number of positive exemplars for training, requiringon
average upwards of 100 positive exemplars of a keyword in or-
der to achieve reasonable detection rates; finally, most word-
spotting implementations using HMMs require embedding the
trained keyword HMMs in a graph in order to perform Viterbi
decoding. The graph must include other “filler” models con-
sisting of monophone or triphone HMMs. Training these filler
models seems like an overly tedious thing to do when our main
concern is to mainly detect a keyword.

In this work, we present a novel architecture for word-
spotting that aims to avoid some of the afore-mentioned short-
comings. We motivate our novel architecture in the following
section.

3. Spectro-Temporal Phenomena
A typical mel-spectrogram of speech, such as the one shown
in Figure 1, displays several important and well-known phe-
nomena: harmonicity, which is exemplified by the presence of
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Figure 1: The mel-spectrum of an example of the word
‘‘Greasy’’

thin horizontal lines related to the pitch of the speaker; formant-
related amplitude modulations, exemplified by broader horizon-
tal lines; vertical onset/offset edges in time, related to plosive
sounds in speech; and noise, related to fricatives, aspirants, and
other phonemes which generate noise.

All of these speech-related phenomena may be viewed as
different types of spectro-temporal modulations, or “edges”,
that come at various orientations, durations, and scales. Clearly,
one of the challenges of designing any feature set is that it must
be equally selective for all of these various features.

Frame-based MFCC features may be viewed as a feature
that spans a vertical line on a spectrogram. As a result, MFCC
features are predominantly sensitive tohorizonal spectral mod-
ulations such as harmonic lines and formants. On the other
hand, they are not explicitly senstive for temporal modula-
tions such as offsets/onsets found in plosives, or more com-
plex spectro-temporal patterns such as those found in fricatives
(speckle noise patterns) or diphthongs (rising/falling formants).
While it is true that the addition of∆ and∆∆ parameters to
MFCCs adds temporal selectivity, this selectivity extendsonly
for a short time scale of about 30-50 msec, and cannot capture
longer temporal modulations lasting 100-200msec.

Additionally, MFCC features may be viewed as aglobal
feature: the spectral frame from which the MFCC parameters
are computed spans the entire frequency range. On the other
hand, many phenomena which occur in a spectrogram arelo-
cal: one can see for example that harmonic, formant, or noise
patterns do not affect the entire spectral frame but only local
spectro-temporal portions.

Recent neurophysiological evidence from a number of ani-
mals such as ferrets [5] and birds [6] indicates that cells inthe
auditory cortex are, in fact, tuned to localized spectro-temporal
modulations. The spectro-temporal receptive fields (STRFs)
of these cortical cells are selective for complex but localized
spectro-temporal patterns. Overall, the general picture painted
by these neurophysiological findings is that the features that au-
ditory cortical cells are selective for are morepatch-like than
frame-like.

4. Ordered Bags of Spectro-Temporal
Patch Features

Motivated by these observations, we propose a new speech
feature set in this work which consists simply of2D spectro-
temporal patches. These patches are extracted from the exem-
plars of the target word atrandom locations in frequency and
time. The height and width of each extracted patch is drawn uni-
formly from a spectral rangeFrange and temporal rangeTrange

(defined in the Section 10 section).

Each extracted patch featurePk(f, t) may be viewed as
a matched filter that is selective for other similar patterns.
Since the patches are extracted non-parametrically from the
target word exemplars, they can in principle capture any type
of spectro-temporal phenomenon occurring in the target word,
such as harmonic lines, formant ridges/sweeps, vertical on-
set/offset plosives, or noise patterns.

Since speech is a temporal phenomenon, it is necessary to
keep track of theorder in which certain patches are activated
for a target word. This is achieved in our case by recording the
location in frequencyfk and relative time rtk at which patch
Pk occurred in the target word. Relative-time is measured with
respect to the overall duration of the target exemplar, so a patch
extracted at timet = 400msec from a target word of duration
800msec has the same relative-time index ofrt = 0.5 as a patch
extracted att = 200msec from a word of duration 400msec.

Our extracted patch dictionary thus consists of a set ofK

extracted patches{P}K
k=1, their center locations in frequency

{f}K
k=1, and their center locations in relative time{rt}K

k=1. We
call this dictionary anordered bag of spectro-temporal patches
to emphasize that a rough measure temporal order is preserved.
Shown in the left part of Figure 2 are some example patches
extracted from a spectrogram of the wordgreasy.

5. Spectro-Temporal Patch Response
Given a novel spectrogramS(f, t) of durationT , the patch dic-
tionary may be applied to that spectrogram to compute thepatch
dictionary response {Rk}

K
k=1 as follows: each patchPk in the

dictionary is placed at location(fk, rtk ∗ T ), and theL2 norm
is computed between the patch and underlying portion of the
spectrogram:

Rk =
X

f

X

t

‖Pk(f − fk, t − rtk ∗ T ) − S(f, t)‖2 (1)

where‖f − fk‖ ≤ Hk

2
and‖t − rtk ∗ T‖ ≤ Wk

2
. If the patch

is placed at a portion near the borders of the spectrogram, then
the intervals in the integral of Equation 1 are truncated to their
valid limits.

If there areK patches in our dictionary, then the spectro-
temporal responseR(k) is of dimensionK, independent of the
length T of the spectrogramS(f, t). In effect, computing the
patch dictionary response produces a fixed-length feature vector
independent of the duration of the input. The computation of the
patch response is shown in middle part of Figure 2.

6. Invariance Through Pooling
Computation of our patch dictionary responseR(k) as defined
in Equation 1 amounts to an operation that is not much different
from convolving the entire spectra of the exemplar target key-
words with novel input spectra. As such, our approach, while
being selective, would not be invariant to the typical variations
which occur to patches in the target keywords.

An important class of variations considered in this work
consists of patch frequency shifts and patch temporal shifts. A
certain patch which occurs at frequencyf and relative timert
for a certain target word exemplar, may occur atf + ∆f and
relative timert + ∆rt for another target word exemplar.

It is in general not clear how to use an HMM to handle this
important class of variations. While the DTW step in an HMM
is capable of handling 1-D time shifts (or 1-D frequency shifts),
an HMM is not capable for handling joint 2D spectro-temporal
shifts of the underlying patch features.



Figure 2: An overview of our word-spotting architecture. Left: Spectro-temporal patches with random positions and sizes are extracted
from an exemplar keyword. Middle: The extracted patches arematched with a novel incoming sound at their exact extraction locations
in frequency and relative time. Right: The best match to the patches within a local pooling range is computed.

This type of invariance is addressed by drawing upon recent
progress in biologically-inspired computer vision modelsof ob-
ject recognition [7, 8]. These approaches use a bag-of-features
approach in which small (possibly filtered) image patches are
extracted from a training set and then subsequently convolved
with an incoming novel image at different positions and scales
to compute the overall patch response (much as we do in Equa-
tion 1). For each dictionary patch, itsbest response across a
range of positions and scales is retained. In effect, a pooling op-
eration (via a MAX or MIN operator) is performed to account
for the variations of the patch feature across typical variations
seen in images.

The local pooling approach is adopted in this work. Specif-
ically, we define a local frequency shift range∆Frange and a
local temporal shift range∆Trange. Ourpooled patch response
R̂k is defined as

R̂k = min
‖fc − fk‖ ≤ ∆Frange

‖tc − rtk ∗ T‖ ≤ ∆Trange

Rk(fc, tc) (2)

. The pooled response for a certain dictionary patch is the best
match of that patch over a certain frequency shift range and tem-
poral shift range, centered around that patch’s center frequency
fk and relative-time locationrtk.

7. Discriminative Classification Via SVMs
Since the pooled patch dictionary responsesR̂(k) are of dimen-
sionK and independent of time, it is possible to apply standard
discriminative learning techniques to learn a decision function
that separates positive keyword patch responses from negative
non-keyword patch responses.

In this work, support vector machine classifiers [9] are used
to learn such a disciminating hyperplane. Given a set ofNpos

exemplar spectrograms{Spos(f, t)} of the target word, the cor-
responding pooled spectro-temporal response vectors{R̂pos}
are first computed. These positive patch responses are associ-
ated with a positive class labelypos = 1.

From the negative training utterances, a randomly selected
set ofNneg = Npos segments{Sneg(f, t)} are extracted. The
durations of those segments are drawn from a normal distribu-
tion with meanµpos equal to the mean of the target keyword du-
rations, and standard deviationσpos equal to the standard devi-

ation of the target keyword durations. From these random neg-
ative spectrogram segments, the corresponding negative pooled
responses{R̂neg} are computed. These negative responses are
associated with a negative class labelyneg = −1.

An initial support vector machine is trained to produce a
hyperplane that discriminates between the positive feature re-
sponses{R̂pos} and the randomly chosen negative feature re-
sponses{R̂neg}. The trained support vector machine produces
a decision functionytest = f(R̂test) that takes the form

y
test = sgn(

Npos
+Nneg

X

i=1

yiαiK(R̂i, R̂
test) + b

| {z }

rw

) (3)

Typically theαi are zero except for a few positive and negative
“support-vector” exemplars that lie at the boundary between the
two classes. In all our experiments, a Gaussian SVM kernel
K(x, x) is used. The valuerw denotes the distance of the test
patch responsêRtest from the separating hyperplane: the more
positive this value, the more confident that the SVM thinks the
test exemplar is a target keyword; the more negative, the more
confident that the SVM thinks this test exemplar is not a key-
word.

In general, the initial separating SVM hyperplane of Equa-
tion 3 estimated using random negative examples may gener-
ate too many false positives at test time. To reduce false posi-
tives, one round ofbootstrapping is performed: Using the ini-
tial SVM, 1 minute of negative training data is scanned and
classified. The false positives from this bootstrapping runare
extracted and lumped together along with the initial randomly
chosen negative examples, and the SVM is re-trained. This pro-
duces a final SVM classifier for each target keyword.

8. “Sliding Window” Classification
In this work, asliding-window approach is adopted for testing,
in which a window of width W in frames is slid across the novel
test utterance. For each keyword experiment, the width W is set
to the average duration in frames of that target keyword (ob-
tained from the target exemplars). Similarly, the window step-
size in frames is set to0.2 ∗ W .

For each extracted window, a pooled patch responseRtest

is computed as in Equation 2, and the trained bootstrapped key-
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Figure 3: Example output of our system. Top: the mel-spectrum
for a novel test utterance, with the wordGreasy highlighted
within black columns. Middle: theytest output of our SVM
classifier. Bottom: therw distance value of our classifer.

word SVM is applied to that response to produce the class label
ytest for that window (1 if the target is present, and -1 if not).

It should be noted that the sliding-window approach
adopted in this work is fundamentally different from Viterbi-
style decoding schemes adopted by most word-spotting systems
[1, 2, 3, 4]. The sliding-window approach islocal, classifying
each local portion independent of its context. Viterbi-style de-
coding schemes, on the other hand, areglobal, finding optimal
paths thought a graph network with optimal treatment of con-
text. In principle, however, our approach can be embedded in
a Viterbi-style decoding scheme, in which several SVM classi-
fiers for different words are run in parallel. Due to space limita-
tions, we choose to focus on local sliding-window approaches
in this work.

9. ROC curves

Since the word spotting task is adetection task, receiver opera-
tor characteristics, or ROC curves, are employed to summarize
our detection experiments.

The vertical dimension in our ROC curves measures thede-
tection rate, which is the fraction of of target words present in
the test data that were correctly detected. A detection rateof
0.9% thus means that 90 out of 100 target keywords were de-
tected correctly, and 10 were missed.

The horizontal dimension of the ROC curve measures the
false positive rate, which is the number of false positives per
minute of test data. This value is computed by dividing the total
number of false positives which occurred in the test data by the
total time of the test data.

The rw value from the SVM in Equation 3, which is the
distance to the hyperplane extracted for each window classifi-
cation, constitutes the parameter that is swept over to produce
the ROC curve in our SVM experiments.

10. Experimental Results

In the following, we present initial results on word-spotting ex-
periments for four TIMIT keywords:greasy, dark, wash,
andoily.

10.1. Training and Testing Data

Our dataset is the TIMIT corpus, which was divided into stan-
dard train and test sets following the convention in [10]. Ad-
ditionally, the train and test sets were further split into positive
and negative sets containing (and not containing) the exemplar
keywords.

The positive training utterances for each keyword consisted
only of the keyword, while the negative training sets were
longer utterances in which the keyword was not present. The
numberNpos of positive training exemplars for each keyword
was varied across experiments, as describes in the next sec-
tion, fromNpos = {1, 5, 10, 20, 200}. The number of negative
training utterances was always fixed at 100 utterances, or about
5 minutes of negative speech.

The positive and negative test sets consisted of equally long
utterances containing (and not containing) the keyword. Across
each keyword experiment, the test set consisted of 100 positive
utterances containing the keyword, and 100 utterances not con-
taining the keyword, or about 10 minutes of test speech.

10.2. Mel-Spectrogram Analysis

All of the 16KHz TIMIT training and test utterances were
converted to mel-spectrograms: First the utterances are pre-
emphasized, followed by STFT analysis using a 25msec Ham-
ming window with 4msec hops. An 800-point FFT is applied,
followed by truncation to 400 bins due to the symmetry of
the Fourier transform. The resulting power spectrum is sub-
sequently passed through a Mel-filterbank consisting of 40 tri-
angular filters equally spaced on the Mel scale ranging from
0 to 8KHz. The mel-filterbank output is passed though a log
function to produce the final log-mel-spectra used in all ourex-
periments.

10.3. System Parameters

Patch dictionaries were constructed for each keyword from
the positive exemplar melspectra. The parametersFrange and
Trange which determine the extracted patch height and width
ranges respectively were set to1− 20mels and1− 20frames

across all keywords. The parameter∆Frange which determines
the pooling range in frequency is set to 5 mels for all experi-
ments. The parameter∆Trange which deterimines the tempo-
ral pooling range is set to the standard deviationσpos of the
durations of the positive exemplars for that keyword.

10.4. HMM-MFCC Baseline

As a baseline comparison to our approach, we train an HMM
for each target word, using 5 states, 3 Gaussian mixtures per
state, and diagonal covariances. The target word HMMs are
trained using MFCC features, with∆s and∆∆s appended to
produce a 39 dimensional feature vector. All comparisons with
our approach are made with the HMMs trained on the same
number of positive target exemplars.

The target keyword HMMs are incorporated into the same
sliding-window framework as that of the keyword SVMs. For
each window W, the trained keyword HMM assigns a log-
likelihood using the standard forward-backward recursions.
This log-likelihood is subsequently thresholded to produce
ROC curves for the HMM baseline experiments.
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Figure 4: Effect of the patch dictionary size K on detection performance for the keyword‘‘greasy’’ (left) and‘‘dark’’ (right)

10.5. Effect of the Dictionary Size

An initial experiment was performed to determine the ef-
fect of the patch dictionary size on detection performance.
The number of positive exemplars were kept fixed at 20,
while the number of patches extracted was varied fromK =
{50, 100, 300, 600, 900, 1200}. Shown in Figure 4 are such ex-
periments involving the keywordsgreasy anddark.

While increasing the patch dictionary size clearly improves
the area under the ROC curve, the increase in performance is
small. In fact, a patch dictionary of sizeK = 100 does just
about as well one withK = 200 or more patches. As a result,
all of our subsequent set of experiments were performed witha
fixed patch dictionary size ofK = 100.

10.6. Effect of the number of Positive Examples

In Figure 8, we examine more carefully the difference in per-
formance between our approach and that of the HMM baseline
for the four keywords. Additionally, we examine the effect of
different numbers of positive exemplars on performance.

Shown in the left column of Figure 8 are the four keyword
ROC curves from our approach as we vary the number of posi-
tive training exemplars. Shown in the right column are the cor-
responding four keyword ROC curves for the HMM baseline as
we vary the number of positive exemplars.

Firstly, we note that,across all keywords and all numbers
of positive exemplars, our approach clearly outperforms the
HMM-MFCC baseline.

Additionally, we also note thatour approach performs well
with as few as 5 examples per keyword. This is to be expected
since support vector machines are known to work well even
with very few examples. Only when our system is provided
with 1 exemplar does it begin to break down. In contrast, the
HMMs need at least 50 exemplars in order for them to start to
achieve reasonable detection and false positive rates.

Specifically, for 20 positive exemplars, our approach
achieves 95% detection at 0.25 false positives per minute for
greasy, 90% detection at 0.25 false positives per minute for
wash, 70% detection at 1 false positive per minute fordark,
and 60% detection at 2 false positives per minute foroily. It
is unclear at this time why performance foroily is so low for
both our approach and that of the HMM-MFCC baseline.

11. Future Work
While this paper presented initial results, more experiments are
needed across a larger number of target keywords to assess the

approach’s average performance. Additionally, more experi-
ments are needed in which the parameters of the system are
cross-validated to explore their effect on system performance.

Clearly, it would be interesting to see whether the proposed
approach may be able to detect target wordsin noise, and fur-
ther experiments involving the AURORA speech dataset [11]
are planned.

Finally, we plan on exploring the capacity of this approach
to detect sub-word units such as syllables, which would allow us
to replace HMM acoustic models in a large-vocabulary speech
recognition task.
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Figure 5: ‘‘Greasy’’ ROC curves from our approach (left) versus the HMM-MFCC approach (right), for various numbers of
positive training exemplars.
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Figure 6:‘‘Wash’’ ROC curves from our approach (left) versus the HMM-MFCC approach (right), for various numbers of positive
training exemplars.
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Figure 7:‘‘Dark’’ ROC curves from our approach (left) versus the HMM-MFCC approach (right), for various numbers of positive
training exemplars.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp rate (fp/min)

hi
t r

at
e 

(h
its

/to
ta

l p
os

iti
ve

s)

 

 
oily 200pos
oily 100pos
oily 050pos
oily 020pos
oily 010pos
oily 005pos
oily 001pos

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp rate (fp/min)

hi
t r

at
e 

(h
its

/to
ta

l p
os

iti
ve

s)

 

 
oily 200pos
oily 100pos
oily 050pos
oily 020pos
oily 010pos
oily 005pos
oily 001pos

Figure 8:‘‘Oily’’ ROC curves from our approach (left) versus the HMM-MFCC approach (right), for various numbers of positive
training exemplars.


