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Abstract

We present a novel architecture for word-spotting which is
trained from a small number of examples to classify an utter-
ance as containing a target keyword or not. The word-smpttin
architecture relies on a novel feature set consisting oft afse
ordered spectro-temporal patches which are extracted from the
exemplar mel-spectra of target keywords. A local pooling op
eration across frequency and time is introduced which esdow
the extracted patch features with the flexibility to matchealo
unseen keywords. Finally, we describe how to train a support
vector machine classifier to separate between keyword amd no
keyword patch feature responses. We present preliminary re
sults indicating that our word-spotting architecture awhs a
detection rate of 70-95% with false positive rates of abo250

2 false positives per minute.

Index Terms: word-spotting, spectro-temporal patches, sup-
port vector machines

1. Introduction

In this work, we present a novel architecture for performing
“word-spotting”. Given an utteranc&, the goal of word-
spotting is to detect whether a certain target ward present

in the utterance or not. Applications for this task are nwousy
ranging from audio information retrieval to speech sutaeite

to general speech recognition itself.

Our system requires only a few (about 20) positive exem-
plars of the target word, and about 5 minutes of speech intwhic
the target word is not present. From this data our systemstrai
a discriminative support vector machine classifier [9], athis
able to classify whether a windoW of sound contains the tar-
get word or not. By sliding this windowd” across the utterance
and classifying each portion, the entire utterance candssel
fied as containing the target word or not.

2. Motivation

Our motivation in this work is to explore one of the central is
sues at the heart of auditory processing, namely how to lwild
model of a keyword that is simultaneousistective andinvari-
ant:

On the one hand, a word-spotting system requires a set of
auditory features that areselective for the target word. These
features allow the system to respond selectively if theetarg
word occurs, and not otherwise.

On the other hand, the system must alsoim@riant to
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the types of variations which typically occur to the targetrey
such as variations in duration, pitch, speaker, noise, aad-c
nel.

Most modern word-spotting algorithms [1, 2, 3, 4] address
this trade-off through the currently dominant “HMM-MFCC”
paradigm: frame-based Mel-frequency cepstral coeffisiang
extracted as speech features, which are then used to tdaierhi
markov models for the keywords of interest.

In this paradigm, MFCCs provide a mechanism for achiev-
ing spectral selectivity: each spectral frame is projected onto
a low-order DCT basis representing different types of gpéct
modulations. The incorporation Afand AA cepstral coeffi-
cients also adds temporal sensitivity to the MFCC feature se

The HMM component, on the other hand, serves as a mech-
anism for achieving invariance: specifically, the use of-sev
eral Gaussian mixture components per state models the spec-
tral variations due to coarticulation, pitch changes, omfant
changes which routinely occur during different instamtias of
the target word. In addition, the forward-backward dynamic
time-warping (DTW) component of the HMM is a mechanism
for modelling the temporal duration changes of the keyword.

Unfortunately, there are many problems associated with the
HMM-MFCC framework: firstly, as we will argue in the next
section, while MFCC features are selective for spectratfes,
they are not explicitly selective for a host of other impatta
temporal and spectro-temporal phenomena in speech which oc
cur over longer time-scales; secondly, HMMs usually need a
large number of positive exemplars for training, requiromg
average upwards of 100 positive exemplars of a keyword in or-
der to achieve reasonable detection rates; finally, mostl-wor
spotting implementations using HMMs require embedding the
trained keyword HMMs in a graph in order to perform Viterbi
decoding. The graph must include other “filler” models con-
sisting of monophone or triphone HMMs. Training these filler
models seems like an overly tedious thing to do when our main
concern is to mainly detect a keyword.

In this work, we present a novel architecture for word-
spotting that aims to avoid some of the afore-mentionedtshor
comings. We motivate our novel architecture in the follogvin
section.

3. Spectro-Temporal Phenomena

A typical mel-spectrogram of speech, such as the one shown
in Figure 1, displays several important and well-known phe-
nomena: harmonicity, which is exemplified by the presence of



Figure 1: The mel-spectrum of an example of the word
‘“Geasy’’

thin horizontal lines related to the pitch of the speakemfant-
related amplitude modulations, exemplified by broaderzoori
tal lines; vertical onset/offset edges in time, related ltsipe
sounds in speech; and noise, related to fricatives, aspjrand
other phonemes which generate noise.

All of these speech-related phenomena may be viewed as
different types of spectro-temporal modulations, or “esige
that come at various orientations, durations, and scalesuig,
one of the challenges of designing any feature set is thaistm
be equally selective for all of these various features.

Frame-based MFCC features may be viewed as a feature
that spans a vertical line on a spectrogram. As a result, MFCC
features are predominantly sensitivehtwizonal spectral mod-
ulations such as harmonic lines and formants. On the other
hand, they are not explicitly senstive for temporal modula-
tions such as offsets/onsets found in plosives, or more com-
plex spectro-temporal patterns such as those found irtifresa
(speckle noise patterns) or diphthongs (rising/fallingrfants).
While it is true that the addition oA and AA parameters to
MFCCs adds temporal selectivity, this selectivity extendky
for a short time scale of about 30-50 msec, and cannot capture
longer temporal modulations lasting 100-200msec.

Additionally, MFCC features may be viewed agj@bal
feature: the spectral frame from which the MFCC parameters
are computed spans the entire frequency range. On the other
hand, many phenomena which occur in a spectrograntoare
cal: one can see for example that harmonic, formant, or noise
patterns do not affect the entire spectral frame but onlglloc
spectro-temporal portions.

Recent neurophysiological evidence from a number of ani-
mals such as ferrets [5] and birds [6] indicates that celthén
auditory cortex are, in fact, tuned to localized spectrogeral
modulations. The spectro-temporal receptive fields (STRFs
of these cortical cells are selective for complex but |ceai
spectro-temporal patterns. Overall, the general pictaieted
by these neurophysiological findings is that the featurasah-
ditory cortical cells are selective for are mauatch-like than
frame-like.

4. Ordered Bags of Spectro-Temporal
Patch Features

Motivated by these observations, we propose a new speech
feature set in this work which consists simply 2D spectro-
temporal patches. These patches are extracted from the exem-
plars of the target word atndom locations in frequency and

time. The height and width of each extracted patch is drawn uni-
formly from a spectral rang®qn4e and temporal rang&; o ge
(defined in the Section 10 section).

Each extracted patch featuf®,(f,t) may be viewed as
a matched filter that is selective for other similar patterns
Since the patches are extracted non-parametrically fram th
target word exemplars, they can in principle capture ang typ
of spectro-temporal phenomenon occurring in the targetiwor
such as harmonic lines, formant ridges/sweeps, vertical on
set/offset plosives, or noise patterns.

Since speech is a temporal phenomenon, it is necessary to
keep track of theorder in which certain patches are activated
for a target word. This is achieved in our case by recordieg th
location in frequencyf, andrelative time rt; at which patch
Py, occurred in the target word. Relative-time is measured with
respect to the overall duration of the target exemplar, satehp
extracted at time¢ = 400msec from a target word of duration
800msec has the same relative-time indextof 0.5 as a patch
extracted at = 200msec from a word of duration 400msec.

Our extracted patch dictionary thus consists of a sek’of
extracted patche§P}i_,, their center locations in frequency
{f},, and their center locations in relative tifiet} ;. We
call this dictionary arordered bag of spectro-temporal patches
to emphasize that a rough measure temporal order is preserve
Shown in the left part of Figure 2 are some example patches
extracted from a spectrogram of the wadeasy.

5. Spectro-Temporal Patch Response

Given a novel spectrogra’i( f, t) of durationT’, the patch dic-
tionary may be applied to that spectrogram to comput@ateh
dictionary response { R; }i_, as follows: each patc, in the
dictionary is placed at locatiofyfy, rtx * T'), and theL, norm

is computed between the patch and underlying portion of the
spectrogram:

Ry = ZZ'lPk(f_fk7t—Ttk «T)—S(LDI> (D)
f t

where||f — fi]] < Z& and||t — rt;, + T|| < %k If the patch

is placed at a portion near the borders of the spectrogram, th
the intervals in the integral of Equation 1 are truncatech&irt
valid limits.

If there areK patches in our dictionary, then the spectro-
temporal responsB(k) is of dimensionk, independent of the
length T of the spectrograrfi(f,¢). In effect, computing the
patch dictionary response produces a fixed-length feata®r
independent of the duration of theinput. The computation of the
patch response is shown in middle part of Figure 2.

6. Invariance Through Pooling

Computation of our patch dictionary respon3ét) as defined

in Equation 1 amounts to an operation that is not much differe
from convolving the entire spectra of the exemplar targgt ke
words with novel input spectra. As such, our approach, while
being selective, would not be invariant to the typical Vtioias
which occur to patches in the target keywords.

An important class of variations considered in this work
consists of patch frequency shifts and patch temporalsshéft
certain patch which occurs at frequengyand relative time-¢
for a certain target word exemplar, may occurfat A f and
relative timert + Art for another target word exemplar.

Itis in general not clear how to use an HMM to handle this
important class of variations. While the DTW step in an HMM
is capable of handling 1-D time shifts (or 1-D frequency tshjf
an HMM is not capable for handling joint 2D spectro-temporal
shifts of the underlying patch features.



Figure 2: An overview of our word-spotting architecture ftt Spectro-temporal patches with random positions anessie extracted
from an exemplar keyword. Middle: The extracted patchesratehed with a novel incoming sound at their exact extradtoations
in frequency and relative time. Right: The best match to titehpes within a local pooling range is computed.

This type of invariance is addressed by drawing upon recent
progress in biologically-inspired computer vision modglsb-
ject recognition [7, 8]. These approaches use a bag-ofifest
approach in which small (possibly filtered) image patches ar
extracted from a training set and then subsequently coedolv
with an incoming novel image at different positions and esal
to compute the overall patch response (much as we do in Equa-
tion 1). For each dictionary patch, ibest response across a
range of positions and scales is retained. In effect, a poalp-
eration (via a MAX or MIN operator) is performed to account
for the variations of the patch feature across typical Vs
seen in images.

The local pooling approach is adopted in this work. Specif-
ically, we define a local frequency shift rangeF;...q. and a
local temporal shift rangAT:.qr 4. Ourpooled patch response

Ry, is defined as

min Ri(fe,te) 2

||fc - fk” < AFr'ange
[te = 7t x T'|| < ATrange

. The pooled response for a certain dictionary patch is tise be
match of that patch over a certain frequency shift range eimd t
poral shift range, centered around that patch’s centeuéecy

fr and relative-time locationty,.

7. Discriminative Classification Via SVMs

Since the pooled patch dictionary responéiés) are of dimen-
sion K and independent of time, it is possible to apply standard
discriminative learning techniques to learn a decisiorcfiom
that separates positive keyword patch responses frominegat
non-keyword patch responses.

In this work, support vector machine classifiers [9] are used
to learn such a disciminating hyperplane. Given a sev&f*
exemplar spectrograr{sS¥°*( f, t) } of the target word, the cor-
responding pooled spectro-temporal response ven{téi‘gs}
are first computed. These positive patch responses arel-assoc
ated with a positive class labgt°® = 1.

From the negative training utterances, a randomly selected
set of N9 = NP?°° segmentqS™7(f,t)} are extracted. The
durations of those segments are drawn from a normal distribu
tion with mean,”°® equal to the mean of the target keyword du-
rations, and standard deviatiefi°® equal to the standard devi-

ation of the target keyword durations. From these random neg
ative spectrogram segments, the corresponding negatblego
response$R”€9} are computed. These negative responses are
associated with a negative class lap&t? = —1.

An initial support vector machine is trained to produce a
hyperplane that discriminates between the positive feater
sponses{ﬁ’,”"s} and the randomly chosen negative feature re-
sponses{R"eg}. The trained support vector machine produces
a decision functiony**** = f(R'**") that takes the form

NPOs L Nneg

>

i=1

ytest _ sgn( yiaiK(Ri, Rtest) + b) 3)

Tw

Typically thea; are zero except for a few positive and negative
“support-vector” exemplars that lie at the boundary betwbe

two classes. In all our experiments, a Gaussian SVM kernel
K (z,z) is used. The valuew denotes the distance of the test
patch respons&*** from the separating hyperplane: the more
positive this value, the more confident that the SVM thinkes th
test exemplar is a target keyword; the more negative, the mor
confident that the SVM thinks this test exemplar is not a key-
word.

In general, the initial separating SVM hyperplane of Equa-
tion 3 estimated using random negative examples may gener-
ate too many false positives at test time. To reduce false pos
tives, one round obootstrapping is performed: Using the ini-
tial SVM, 1 minute of negative training data is scanned and
classified. The false positives from this bootstrapping atm
extracted and lumped together along with the initial ranigom
chosen negative examples, and the SVM is re-trained. This pr
duces a final SVM classifier for each target keyword.

8. “Sliding Window” Classification

In this work, adliding-window approach is adopted for testing,
in which a window of width W in frames is slid across the novel
test utterance. For each keyword experiment, the width \tis s
to the average duration in frames of that target keyword (ob-
tained from the target exemplars). Similarly, the windoepst
size in frames is set .2 x V.

For each extracted window, a pooled patch respdisé’
is computed as in Equation 2, and the trained bootstrapped ke
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Figure 3: Example output of our system. Top: the mel-spettru
for a novel test utterance, with the wo@l easy highlighted
within black columns. Middle: thetest output of our SVM
classifier. Bottom: thew distance value of our classifer.

word SVM is applied to that response to produce the class$ labe
y's* for that window (1 if the target is present, and -1 if not).

It should be noted that the sliding-window approach
adopted in this work is fundamentally different from Viterb
style decoding schemes adopted by most word-spottingragste
[1, 2, 3, 4]. The sliding-window approach liscal, classifying
each local portion independent of its context. Viterbilestye-
coding schemes, on the other hand, glabal, finding optimal
paths thought a graph network with optimal treatment of con-
text. In principle, however, our approach can be embedded in
a Viterbi-style decoding scheme, in which several SVM dlass
fiers for different words are run in parallel. Due to spacéttm
tions, we choose to focus on local sliding-window approache
in this work.

9. ROC curves

Since the word spotting task isdatection task, receiver opera-
tor characteristics, or ROC curves, are employed to surzeari
our detection experiments.

The vertical dimension in our ROC curves measuresithe
tection rate, which is the fraction of of target words present in
the test data that were correctly detected. A detectionafate
0.9% thus means that 90 out of 100 target keywords were de-
tected correctly, and 10 were missed.

The horizontal dimension of the ROC curve measures the
false positive rate, which is the number of false positives per
minute of test data. This value is computed by dividing thelto
number of false positives which occurred in the test databy t
total time of the test data.

The rw value from the SVM in Equation 3, which is the
distance to the hyperplane extracted for each window dlassi
cation, constitutes the parameter that is swept over toyzed
the ROC curve in our SVM experiments.

10. Experimental Results

In the following, we present initial results on word-spogfiex-
periments for four TIMIT keywordsgr easy, dar k, wash,
andoi | y.

10.1. Training and Testing Data

Our dataset is the TIMIT corpus, which was divided into stan-
dard train and test sets following the convention in [10].- Ad
ditionally, the train and test sets were further split intsitive
and negative sets containing (and not containing) the ele@mp
keywords.

The positive training utterances for each keyword condiste
only of the keyword, while the negative training sets were
longer utterances in which the keyword was not present. The
numberN?°® of positive training exemplars for each keyword
was varied across experiments, as describes in the next sec-
tion, from N??° = {1, 5,10, 20, 200}. The number of negative
training utterances was always fixed at 100 utterances,autab
5 minutes of negative speech.

The positive and negative test sets consisted of equalty lon
utterances containing (and not containing) the keywordogs
each keyword experiment, the test set consisted of 100iym®sit
utterances containing the keyword, and 100 utterancesomet ¢
taining the keyword, or about 10 minutes of test speech.

10.2. Mel-Spectrogram Analysis

All of the 16KHz TIMIT training and test utterances were
converted to mel-spectrograms: First the utterances are pr
emphasized, followed by STFT analysis using a 25msec Ham-
ming window with 4msec hops. An 800-point FFT is applied,
followed by truncation to 400 bins due to the symmetry of
the Fourier transform. The resulting power spectrum is sub-
sequently passed through a Mel-filterbank consisting ofi40 t
angular filters equally spaced on the Mel scale ranging from
0 to 8KHz. The mel-filterbank output is passed though a log
function to produce the final log-mel-spectra used in all@ur
periments.

10.3. System Parameters

Patch dictionaries were constructed for each keyword from
the positive exemplar melspectra. The parameférs, ;. and
Trange Which determine the extracted patch height and width
ranges respectively were setlte- 20mels and1 — 20 frames
across all keywords. The parametef’.,,4e Which determines
the pooling range in frequency is set to 5 mels for all experi-
ments. The parametexT’.,,4. Which deterimines the tempo-
ral pooling range is set to the standard deviatidti® of the
durations of the positive exemplars for that keyword.

10.4. HMM-MFCC Baseline

As a baseline comparison to our approach, we train an HMM
for each target word, using 5 states, 3 Gaussian mixtures per
state, and diagonal covariances. The target word HMMs are
trained using MFCC features, withs andAAs appended to
produce a 39 dimensional feature vector. All comparisorih wi
our approach are made with the HMMs trained on the same
number of positive target exemplars.

The target keyword HMMs are incorporated into the same
sliding-window framework as that of the keyword SVMs. For
each window W, the trained keyword HMM assigns a log-
likelihood using the standard forward-backward recursion
This log-likelihood is subsequently thresholded to praduc
ROC curves for the HMM baseline experiments.
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Figure 4: Effect of the patch dictionary size K on detectienfprmance for the keyword' gr easy’ ’ (left)and‘ * dar k’ * (right)

10.5. Effect of the Dictionary Size

An initial experiment was performed to determine the ef-
fect of the patch dictionary size on detection performance.
The number of positive exemplars were kept fixed at 20,
while the number of patches extracted was varied filgm=
{50, 100, 300, 600, 900, 1200}. Shown in Figure 4 are such ex-
periments involving the keywordgr easy anddar k.

While increasing the patch dictionary size clearly impove
the area under the ROC curve, the increase in performance is
small. In fact, a patch dictionary of sizZz& = 100 does just
about as well one witli{ = 200 or more patches. As a result,
all of our subsequent set of experiments were performedavith
fixed patch dictionary size ok = 100.

10.6. Effect of the number of Positive Examples

In Figure 8, we examine more carefully the difference in per-
formance between our approach and that of the HMM baseline
for the four keywords. Additionally, we examine the effeft o
different numbers of positive exemplars on performance.
Shown in the left column of Figure 8 are the four keyword
ROC curves from our approach as we vary the number of posi-
tive training exemplars. Shown in the right column are the co
responding four keyword ROC curves for the HMM baseline as
we vary the number of positive exemplars.
Firstly, we note thatacross all keywords and all numbers
of positive exemplars, our approach clearly outperforms the
HMM-MFCC baseline.
Additionally, we also note thaiur approach performs well
with as few as 5 examples per keyword. This is to be expected
since support vector machines are known to work well even
with very few examples. Only when our system is provided
with 1 exemplar does it begin to break down. In contrast, the
HMMs need at least 50 exemplars in order for them to start to
achieve reasonable detection and false positive rates.
Specifically, for 20 positive exemplars, our approach
achieves 95% detection at 0.25 false positives per minute fo
gr easy, 90% detection at 0.25 false positives per minute for
wash, 70% detection at 1 false positive per minute dar k,
and 60% detection at 2 false positives per minuteofior y. It
is unclear at this time why performance foirl y is so low for
both our approach and that of the HMM-MFCC baseline.

11. Future Work

While this paper presented initial results, more experimane
needed across a larger number of target keywords to assess th

approach’s average performance. Additionally, more exper
ments are needed in which the parameters of the system are
cross-validated to explore their effect on system perfolcea
Clearly, it would be interesting to see whether the proposed
approach may be able to detect target wardsoise, and fur-
ther experiments involving the AURORA speech dataset [11]
are planned.
Finally, we plan on exploring the capacity of this approach
to detect sub-word units such as syllables, which wouldhalls
to replace HMM acoustic models in a large-vocabulary speech
recognition task.
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Figure 5:* * Greasy’’ ROC curves from our approach (left) versus the HMM-MFCC apph (right), for various numbers of
positive training exemplars.
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Figure 6:' * WAsh’ ' ROC curves from our approach (left) versus the HMM-MFCC apph (right), for various numbers of positive
training exemplars.
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Figure 7:* * Dar k’ ' ROC curves from our approach (left) versus the HMM-MFCC apph (right), for various numbers of positive

training exemplars.
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Figure 8:* * G 1y’ ' ROC curves from our approach (left) versus the HMM-MFCC apph (right), for various numbers of positive
training exemplars.



