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Abstract
To overcome limitations of purely spectral speech features we
previously introduced Hierarchical Spectro-Temporal (HIST)
features. We could show that a combination of HIST and
standard features does reduce recognition errors in clean and
in noise. The HIST features consist of two hierarchical lay-
ers where the corresponding filter functions are learned in a
data driven way. In this paper we investigate how differ-
ent learning methodologies applied to the learning of the fil-
ters on the second layer influence the performance. We com-
pare Non-negative Matrix Factorization (NMF), Non-negative
Sparse Coding (NNSC), and Weight Coding (WC) on a noisy
digit recognition task. NMF and NNSC are unsupervised learn-
ing algorithms whereas WC also includes class specific infor-
mation in the learning process. Additionally we investigate how
a mismatch between the database used for learning the features
and the one employed for training and testing the recognition
system influences the performance.
Index Terms: Spectro-temporal, NMF, NNSC, WC, robust
speech recognition, auditory

1. Introduction
It is well known that the dynamic aspects of speech play a cru-
cial role in its understanding [1]. Nevertheless common speech
features as Mel Ceptstral Coefficients (MFCCs) [2] and RelA-
tive SpecTrAl Perceptual Linear Predictive (RASTA-PLP) fea-
tures [3] capture only stationary spectral information. Dynamic
information is only later added via the calculation of first and
second order derivatives, also referred to as Delta and Double
Delta features.

Yet on the other hand recent findings in neurophysiology
have shown that the receptive fields in the mammalian audi-
tory cortex are sensitive to spectro-temporal patterns [4]. Such
spectro-temporal receptive fields are potentially better suited to
capture formant transitions. Different approaches to make this
information also available to automatic speech recognition sys-
tems have been proposed recently [5, 6, 7, 8, 9]. When dealing
with spectro-temporal features a key issue is the selection of the
best suited subset of the huge set of possible spectro-temporal
patterns. In [5, 6] a rich set of Gabor features was established
and then, based on iterative recognition tests, the optimal subset
selected. Another approach proposed in [10] is to subdivide a
rich set of Gabor features, interpret them as different streams,
and train a recognition system combining the results of these
different streams in a multi-stream recognition framework [11].

To deal with the dimensionality problem we previously pre-
sented Hierarchical Spectro-Temporal (HIST) features [12, 13].
They consist of two layers, the first capturing local spectro-
temporal variations and the second integrating them into larger
receptive fields (compare Fig. 1). This layout was inspired by a
recently proposed system for visual object recognition [14]. At

both layers the receptive fields are learned in a data-driven un-
supervised way. On the first layer we apply ICA (Independent
Component Analysis) and in the second layer we applied so far
Non-Negative Sparse Coding (NNSC). Finally we use a Prin-
cipal Component Analysis (PCA) to orthogonalize the features
and further reduce their dimensionality followed by a Hidden
Markov Model (HMM) for the recognition.

In this paper we will investigate alternative learning algo-
rithms for the receptive fields on the second layer of our feature
hierarchy. We will compare the two unsupervised approaches
Non-negative Matrix Factorization (NMF) and Non-Negative
Sparse Coding (NNSC) as well as Weight Coding (WC) an ex-
tension of NNSC which takes class specific information during
the learning into account.

In this context we will also investigate how the performance
of the features is influenced if fundamentally different datasets
are used to learn the features and to train and test the subsequent
recognition system.

The rest of the paper is organized as follows. In Section 2
we will briefly describe our Hierarchical Spectro-Temporal
(HIST) feature extraction framework. This is followed by a de-
scription of the different algorithms we apply to learn the fea-
tures on the second layer in Section 3. The experimental condi-
tions and recognition results will be presented in Section 4. A
conclusion and a discussion in Section 5 will close the paper.

2. Hierarchical Spectro Temporal Features
The main building blocks of our hierarchical feature extraction
framework are a preprocessing to enhance the formant structure
in the spectrograms, a calculation of local and combination fea-
tures, and a Principal Component Analysis (PCA) to reduce the
feature dimension (compare Fig. 1).

2.1. Preprocessing

We apply a Gammatone filter bank to transform the speech sig-
nal sampled at 16 kHz into the frequency domain. The filter
bank has 128 channels ranging from80 Hz to 8 kHz and fol-
lows the implementation of [15]. From this we obtain spectro-
grams by rectification and low-pass filtering of the filter bank
response. The sampling rate of the spectrograms is then reduced
to 400 Hz(compare Fig. 2 a).

An enhancement of the formant structure in the signal is
obtained by a pre-emphasis of+6 dB/oct. and a subsequent
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Figure 1: Overview of the feature extraction framework.
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(a) Spectrogram
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(b) Enhanced formants

Figure 2: Spectrogram of the digit sequence ”zero four seven”
uttered by a male speaker before (a) and after the formant en-
hancement (b).

filtering along the frequency axis with a Mexican Hat filter. The
last step removes the harmonic structure of the spectrograms
and forms peaks at the formant locations (compare Fig. 2 b and
see [13] for details).

2.2. First layer: Extraction of local features

In the first layerQ(1) of our hierarchical feature extraction
framework local features are extracted via a 2D filtering with
a set ofl = 1 . . . n1 receptive fieldsw(1)

l , taking the absolute
value of the response:

q
(1)
l (t, f) =

∣

∣
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∣

∣

∣
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where the responsesq(1)
l of each neuron has the same size as the

input spectrogramS. The filtering, i. e. convolution, operation
is depicted by∗.

Thesen1 = 8 receptive fields are learned using Indepen-
dent Component Analysis (ICA) on 3500 randomly selected lo-
cal 16 × 16 patches of the enhanced spectrograms taken from
the training set.

For a given point(t, f) in the spectrogram, the activity
q
(1)
l (t, f) of the l-th neuron reveals how close a local patch of

S centered in(t, f) is to the patternl. For each local patch only
the highest correlated patterns are of interest. Therefore, we
perform a Winner-Take-Most (WTM) competition which inhib-
ites the response of the less active neurons at the position(t, f):
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whereM(t, f) = maxk q
(1)
k (t, f) is the maximal value at posi-

tion (t, f) over the eight neurons and0 ≤ γ1 ≤ 1 is a parameter
controlling the strength of the competition [14].

Furthermore, a nonlinear transformation including a thresh-
old θ1 is applied on all ther(1)

l (t, f):

s
(1)
l (t, f) = H(r

(1)
l (t, f) − θ1), (3)

whereH(x) is the Heaviside step function.

After smoothing with a 2D Gaussian filterg1 the resolution
of the spectrogramssl(t, f) is reduced by a factor of four in
both frequency and time dimension:

c
(1)
l (t, f) =

(

s
(1)
l ∗ g1

)

(4t, 4f), (4)

yielding32 frequency channels and a sampling rate of100 Hz.

2.3. Second layer: Extraction of combination features

Each of thek = 1 . . . n2 combination patterns on the second
layerQ(2) of our hierarchy is composed ofn1 receptive fields
w

(2)
l,k , i. e. one for each of the neurons in the previous layer. The

coefficients of these receptive fields are non-negative and span
all frequency channels. Similarly to (1) the activityq

(2)
k (t) of

thek-th neuron at timet is given by:

q
(2)
k (t) =

n1
∑

l=1

(

c
(1)
l ∗ w

(2)
l,k

)

(t, f). (5)

As the combination patterns span the whole frequency range the
response of the neurons does not depend onf anymore. This
means that, by computing the convolution, the patternsw

(2)
l,k

are only shifted in the time direction. Note that the absolute
value is not required in (5) as both thec(1)

l and thew
(2)
l,k are

non-negative.
This yieldsn2 = 50 dimensional featuresq(2)

k (t) at a fea-
ture rate of100 Hz. Delta and double-delta features are com-
puted using a9th order FIR lowpass and bandpass, respectively.
When combining the featuresq(2)

k (t) with their deltas we obtain
ann = 150 dimensional vector. This is reduced to a 39 dimen-
sional feature vectorx via PCA.

The different algorithms used for the learning of then2 =

50 receptive fieldsw(2)
k will be detailed in section 3.

3. Combination Feature Learning

The features on the first, i. e.Q(1), layer of our feature hier-
archy are local and rather unspecific. To create more specific
features integrating larger regions in time and frequency we in-
vestigate different approaches to learn the receptive fieldsw

(2)
k

on the second layer.

3.1. Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) has been introduced
in image processing as a representation which learns in an un-
supervised way the relevant parts of an object [16] and has been
used in audio processing before [17, 18, 19]. This contrasts to
approaches as PCA which represents the images as a whole,
i. e. holistically. The main assumption in NMF is that the input
data to be represented, the basis functions of the factorization,
and the weights at which the basis functions are applied are all
positive. As our input data, the spectrograms, are positive we
can directly apply it. More precisely we cut out patchesP of
length∆ = 40 ms of the first layer activationsc(1)

l . From these
patches we learnn2 = 50 combination features by minimizing
the following cost function [16]:

E =
∑

i

‖Pi −

n2
∑

k=1

αk,iw
(2)
k ‖2, (6)

wherePi is a tensor representing then1 layers of thei-th patch,
the w

(2)
k aren2 non-negative tensors each of them containing

the n1 receptive fieldsw(2)
l,k , and theαk,i are nonnegative re-
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(c) WC

Figure 3: Selection of 10 receptive fieldsw(2) resulting from a learning using (a) NMF, (b) NNSC, and (c) WC. The size of the features
is 32 channels× 40 ms×n1, wheren1 = 8 is given by the dimensionality of theQ(1) layer.

construction factors.

In Fig. 3 a a subset of the resulting features is shown. As
one can see the features are quite localized.

3.2. Non-negative Sparse Coding

An extension to NMF is Non-negative Sparse Coding (NNSC)
which, in addition to the constraints underlying NMF, also puts
a constraint on the coefficients to obtain an efficient use of the
basis [20]. This is obtained via a so called sparsity termλ which
favors reconstructions ofP with a sparse usage of the basis
w(2) via a minimization of the weightsα:

E =
∑

i

‖Pi −

n2
∑

k=1

αk,iw
(2)
k ‖2 + λ

∑

i

n2
∑

k=1

|αk,i| . (7)

Consequently, if multiple possible reconstructions exist, those
are preferred with the more sparse usage of the basis which
leads to more complex basis functions. This can also be seen
when comparing Fig. 3 a and b. The basis function of the
NNSC represent notably more complex combinations of fre-
quency bands than the NMF.

3.3. Weight Coding

The two learning algorithms presented so far where completely
unsupervised, i. e. they are not using any class specific infor-
mation. However, basic functions which mainly capture the in-
formation characteristic for a specific class could be beneficial.
This can be obtained by introducing another termκ in the cost
function (7) of NNSCwhich penalizes correlations between pro-
jections of patchesPi andPj from two different classes with
the same basis functionwk

2 [21]:
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whereq(i) denotes the class label ofPi, nq(i) is the number of
samples in the class ofPi, andT denotes the transpose operator.
The resulting basis is depicted in Fig. 3 c. As can be seen the
additional class specific term seems to counteract the sparsity
constraint to some extent as the resulting features are of less
global character as those resulting from NNSC and at the same
time not as local as those resulting from NMF.

4. Results

We compare the performance of the different combination fea-
ture learning approaches in a noisy digit recognition task. For
doing so we added to TIDigits [22], a database for speaker
independent continuous digit recognition, white noise, noise
recorded in a factory and in a car and babble noise, all taken
from the Noisex database [23] at Signal to Noise Ratios (SNRs)
ranging from−5 dB . . . inf, i. e. we also kept the clean sig-
nal. The HMMs were trained with HTK [24] using whole word
HMMs containing 16 states without skip transitions and a mix-
ture of 3 Gaussians with a diagonal covariance matrix per state.

For the Weight Coding learning scheme we decided to use
the phoneme classes as underlying classes. As TIDigits does
not contain phonetic transcriptions we used TIMIT [25] in-
stead to train the receptive fields of theQ(1) and Q(2) layer
of our feature hierarchy as well as the final PCA. We did so
not only for WC but also for NMF and NNSC. We identified
21 phonemes necessary to cover the digit sequences in TIDigits
and randomly extracted for each of these phonemes 3000 seg-
ments of length40ms from TIMIT. TIMIT contains broadband
recordings of 630 speakers of eight major dialects of Ameri-
can English, each reading ten phonetically rich sentences [25].
Silences and pauses were not included as phonemic categories.
We set the factor of the WTM competitionγ1 = 0.7, the thresh-
olding constantθ1 = 0.25, the sparsity factorλ = 0.05 and the
weight factorκ = 0.8. These values were determined heuris-
tically. As benchmark we also extracted RASTA-PLP features
[3].

As one can see from Fig. 4 for high SNR values RASTA-
PLP features perform better than the HIST features with all
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Figure 4: Word error rates (WERs) for HIST and RASTA-PLP

features when factory noise was added at SNR levels ranging
from−5 dB . . . inf.

white factory babble car
RASTA-PLP 43.1 41.0 35.0 19.5
HIST-NMF 41.2 39.4 55.7 16.3
HIST-NNSC 44.4 42.6 64.7 16.3
HIST-WC 40.2 38.6 58.4 16.4
RASTA-PLP+HIST-NMF 32.9 32.5 49.5 11.4
RASTA-PLP+HIST-NNSC 38.0 38.4 59.7 12.8
RASTA-PLP+HIST-WC 35.9 35.0 58.4 12.4
RASTA-PLP+HIST-NMFTI 27.9 30.3 49.0 10.6
RASTA-PLP+HIST-NNSCTI 30.1 31.4 44.8 11.6

Table 1: Average word error rates for the different feature types
when the specified noise types at SNR values ranging from
−5 dB . . . inf were added.

types of combination features. On the other hand for low SNR
values the HIST features obtain similar or better results than the
RASTA-PLP features. Yet the difference between the different
types of HIST features is small. In Table 1 we also depicted
the values for the different noise types averaged over all SNR
levels.

The behavior we observe suggests to investigate a combi-
nation of the HIST and RASTA-PLP features. In these cases
the combination was obtained via feature concatenation, i. e.
we concatenated the39 dimensional HIST features and the45
dimensional RASTA-PLP features to a84 dimensional feature
vector. The results of this feature concatenation can be seen in
Fig. 5 and Table 1.

One can see that the combination of HIST and RASTA-PLP

features improves results, especially for medium and high SNR
values. To better asses this we also calculated the relative im-
provements of the feature combination compared to RASTA-
PLP features alone (compare Fig. 6 and Table 2).

This reveals that the combination of HIST and RASTA-PLP

features independent of the learning algorithm improves results
for all noise types and SNR levels with the exception of babble
noise. We have seen this unfavorable behavior of the HIST fea-
tures in babble noise already previously [13]. Via additional ex-
periments we concluded that the reason for this is the very high
sensitivity of the HIST features to speech. The preprocessing
strongly enhances the speech structures present in babble noise
and leads to a very significant amount of word insertions. This
causes the very unfavorable recognition results. As we have
shown in [13] this can be remedied by inserting also babble
noise in the training phase. In this case the subsequent HMMs
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Figure 5: Word error rates (WERs) for the combination of
HIST and RASTA-PLP features as well as RASTA-PLP features
alone when factory noise was added at SNR levels ranging from
−5 dB . . . inf.

white factory babble car
RASTA-PLP+HIST-NMF 29.6 30.8 -145.7 41.0
RASTA-PLP+HIST-NNSC 10.3 15.3 -292.4 39.4
RASTA-PLP+HIST-WC 19.2 23.7 -268.0 36.0
RASTA-PLP+HIST-NMFTI 35.9 33.3 -123.7 41.4
RASTA-PLP+HIST-NNSCTI 34.0 32.1 -85.1 40.7

Table 2: Average relative improvement of the combination of
HIST and RASTA-PLP features when the specified noise types
at SNR values ranging from−5 dB . . . inf were added.

learn to discriminate between real speech segments and babble
noise.

When we analyze the different learning algorithms more
closely we see that NMF shows the best performance. NNSC

and WC perform very similar to NMF for medium to high
SNR values but show clear inferior behavior at low SNR val-
ues. Thereby the performance of WC lies in between those of
NMF and NNSC.
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Figure 6: Relative improvements compared to RASTA-PLP fea-
tures when factory noise was added to the test set. The bars
indicate the 95% confidence intervals calculated according to
[26].

We saw already in previous experiments such substan-
tial improvements from the combination of HIST features and
RASTA-PLP features [27, 13]. Yet in those experiments only
NNSC was deployed and the features were learned on the train-
ing set of TIDigits, the database on which also the recognition
tests are performed and not as in this case on TIMIT which dif-



fers substantially from TIDigits. Recall that TIDigits consists of
continuously uttered digit sequences whereas TIMIT contains
phonetically rich sentences which do not contain numbers.

In a second experiment we investigated to what extent the
database used in the learning of the features influences the per-
formance. Hence we learned for NMF and NNSC both theQ(1)

and theQ(2) layer on the TIDigits database. As TIDigits does
not contain phonetic labels we could not include WC in this
test. The relative improvements of the combination of HIST

and RASTA-PLP features for this setup are given in Table 2 and
Fig. 7 (the subscript TI indicates that the training of the recep-
tive fields was performed on TIDigits).
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Figure 7: Relative improvements of the features trained on
TIDigits compared to RASTA-PLP features when factory noise
was added to the test set. The bars indicate the 95% confidence
intervals calculated according to [26].

As one can see in case of the NMF results obtained when
learning the features on TIDigits are very similar to those ob-
tained when learning them on TIMIT. Overall the results in the
case where the database used for learning the features and per-
forming the recognition experiments, i. e. in both cases TIDig-
its, are slightly better. However, the performance of NNSC im-
proved significantly in this matched learning condition. In this
case the difference between NMF and NNSC is only small.

5. Conclusion
In previous experiments we could already show that the unsu-
pervised learning in our proposed hierarchical spectro-temporal
speech features is able to extract from the very high dimensional
space of spectro-temporal patterns information not captured by
conventional spectral features and that this information is ben-
eficial to improve recognition results [12, 13]. Here we investi-
gated how alternative learning algorithms applied on the second
layer of our hierarchy influence the performance and if the fea-
tures learned are specific to a single database or capture general
speech properties.

The results showed that the impact of changing the learning
algorithm is rather low for medium to high SNR levels. In-
cluding class specific information in the learning of the features
as in the Weight Coding did not yield better recognition scores
than NMF or NNSC. For low SNR levels NMF outperformed
the other two approaches. It seems that the more local recep-
tive fields resulting from NMF are better suited in these cases.
The class specific information available to WC seems to be able
to counterbalance to some extent the unfavorable effect of the
sparsity constraint used in NNSC. Hence, we will investigate
in the future a learning approach which uses the class specific
information but without the sparsity constraint.

Regarding the question of the database specificity of the
learned features we could show that the performance deterio-
rated only little from the case when learning of the features as
well as training and testing of the recognition system were per-
formed on the same database to the case when we used two
different databases. This is true for NMF for all SNR levels and
for the other two learning algorithms only for high SNR lev-
els. As the two databases we compared during learning of the
features, namely TIDIgits and TIMIT, cover a quite different
domain, we conclude that the information captured by the HIST

features when using NMF for learning is indeed not database
but speech specific. To what extent it is language specific has to
be determined in further experiments.

Concerning the rather disappointing results regarding the
inclusion of class specific information via the WC algorithm
we suppose that our approach of using only 21 phoneme classes
to capture the information relying in the formant transitions is
not optimal. A modeling based on diphones or triphones seems
more promising. Yet it might also be an inherent problem of
the WC algorithm as previous experiments in a visual object
recognition task could also not identify a clear benefit from the
inclusion of the class specific term in the learning [21].
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