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Abstract
In this paper we present an onset detection algorithm that con-
sists of two parts, the detection of transient peaks in an audio
spectrum and the classification of the peaks, adapting a model
derived from the Bayesian Theory of Surprise. The model is
an unsupervised, robust adaptation of conjugate priors, provid-
ing the distributions of beliefs about the number of the transient
peaks, in a time space as well as in a frequency space. The nov-
elty points marked by the model are then classified according
to their relevance in order to filter out non-onset events, caused
for example by a background noise. It has been evaluated using
a collection of over 170 music excerpts. Our experiments show
that the new model can provide an overall performance close
to the current state of the art solutions. We discuss the advan-
tages of the presented approach and the ways to overcome its
shortcomings and the possible directions of future research.
Index Terms: onset detection, Bayes, modeling, surprise, nov-
elty

1. Introduction
The detection of the beginnings of the notes in digital music
streams is one of the fundamental problems in the Sound and
Music Computing field, as it provides a partition of the audio
stream into the smallest separate segments that have musical
meaning. A note onset may be characterized as a change of the
sound that is relevant in the context of our previous listening ex-
perience. For polyphonic music, an onset may be defined as the
start of the attack phase of one or more simultaneous sounds if
they are perceptually perceived as one note, or a fluent change
of at least one of the perceived pitches. In the last case the onset
can be definied as a period of time instead of a single point in
the time axis.
The detection of the onset events is generally realized using al-
gorithms working either in the time domain or in the spectral
domain. Time-domain algorithms are mainly looking for sharp
slopes of the instantaneous energy and they are robust only for
percussive sounds [1]. However, they are still used for speech
recognition as they provide the time resolution impossible to
achieve by algorithms working in the spectral domain [2]. For
analysing music the Short Time Fourier Transform based solu-
tions are widely used, providing a possibility of modeling per-
ceptual features like frequency masking. The design principle
of these solutions is a construction of an onset detection func-
tion which is then thresholded for obtaining the onset times.
The comprehensive description of the spectral based onset de-
tection algorithms can be found in [1].
A new family of methods combining spectral-based processing

with machine learning techniques has been intensively investi-
gated recently, probably motivated by the success of the Hidden
Markov Models(HMM) in speech recognition [3]. An inter-
esting solution based on HMM’s and Independent Component
Analysis has been presented by Abdallah [4]. However, a better
evaluated and more successful approach seems to be that by La-
coste & Eck, reaching average F measure = 0.79 at the MIREX
2007 [5].
An example of combining an energy-based method working in
the spectral domain and a probabilistic model is the algorithm
of onset detection proposed by Röbel [6]. We decided to make
it a base of our approach because of its very good performance
and the possibility of extension of the probabilistic part which,
in our opinion, deserved a more comprehensive (or complex)
approach.
The solution proposed in this paper consists of two parts, the
detector and the classifier of the transient peaks. The block
diagram of the system is presented at Figure 1. The transient
peaks are detected with the same method as in Röbel system[6],
by thresholding their Centers of Gravity. Further, the transient
peaks are assigned into frequency bins and the amount of sur-
prise is computed as a distance between the distribution of the
number of the transient peaks within a frequency bin and the
prediction done by a Bayesian model [8]. As the increased sur-
prise does not always point to an onset, a two stage relevance
filter has been introduced. The outcome of the system are the
times of the onset events present in the input audio stream.
The paper is structured as follows: the original detector is de-
scribed in Section 2, whereas Section 3 contains the description
of our solution. The performance of our system has been eval-
uated on a data set that provides a wide variety of real music
recordings, coming from different genres (see Section 4). The
discussion about the results and the direction of the future re-
search are described in Section 5.

2. Original model by Röbel
2.1. Centers of gravity

Following [6], the standard Short Time Fourier Transform
(STFT) returns the magnitude spectrum A and the phase spec-
trum φ of a windowed signal. If the signal s(t) is windowed
with the analysis window h(t, tm) centered at the time position
tm, the spectrum is

Sh(ω, tm) = A(ω, tm)ejφ(ω,tm) (1)

where ω is the frequency in radians.
The Center of Gravity (COG) of a peak can be then defined
as the position (in time) of the centroid of the temporal energy



distribution in a given time-frequency region:

tcg =

∫ ωh

ωl

−∂φ(ω, tm)

∂ω
A(ω, tm)2dω∫ ωh

ωl

A(ω, tm)2dω

(2)

Please note that the above estimation of the COG operates local
in frequency, which means that the integrals are limited to the
frequencies located around the peaks (ωl and ωh are positions
of the local minima of the amplitude, see [6] for the derivation
of the formula and the details).
If the attack of an instrument is modeled as a single transient
sinusoid that has the amplitude envelope shaped as a linear
ramp with saturation, and we move a sliding window from the
left over it, the COG moves “up” during the attack and “down”
during the saturation (see [6], Figure 1). The movement is
dependent on the slope of the attack. Thus the attack can be
detected by thresholding of the motion curve of the COG. The
threshold has been set empirically to Ce = 0.1479, so the
transient is close to the signal center if the COG is close to Ce.
The maximum COG still exceeds Ce even for a stationary sinu-
soid with amplitude only 20 dB above the background noise [6].

2.2. Binomial classification of the transient peaks

Spectral peaks related to the signal attacks have the COG far
off the center of the window, however, a noise may cause non-
transient signals to share this property, too. Fortunately, the
peaks related to the attacks are mutually synchronized and the
synchronization of a sufficient number of them is the criteria
that allows to distinguish those from the peaks related to noise
[6].
Röbel has proposed a binomial model describing the probability
of a spectral peak p to have COG > Cs = KCe with K ≥ 1
[6]. K is a parameter that controls the sensivity of the model
thus it has a major influence on the robustness of the detection.
The model requires the number of independent events N as a
parameter it is important if N is not bound to the confidence
of the decision, as the transients with single, wideband peak
would be biased by the low number of observed peaks. There-
fore it cannot be a number of peaks belonging to a frequency
band, although this choice would be natural. Instead, an aver-
age number of peaks that might be contained in a band given
the analysis window, is proposed as N value. As mentioned
in 3.1, the model operates with the data coming from a spec-
trum divided into overlapping frequency bands, spaced equally,
thus the desired transient probability must be consistent with
the number of transient hits n in a frequency band within the
range of G times the standard deviation of the mean value pN .
Therefore it is required that

n = pN ±Gσ = pN ±G
√
p(1− p)N (3)

The model computes the transient probability pc for the current
Fc frames and compares it versus the transient probability ph in
the last Fh frames. Solving then equation (3) for p we obtain

pc =
G2Nc + 2ncNc −G

√
Nc(G2Nc + 4ncNc − 4n2

c)

2Nc(G
2 +Nc)

(4)

Nc and nc are the number of independent events and observed
transient peaks for the current Fc frames. Probability ph we ob-
tain by replacing pc, Nc and nc in the formula 4 by the number
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Figure 1: Block diagram of the surprise-based onset detector.

of independent events and observed transient peaks in the frame
history (ph,Nh and nh, respectively). An attack transient is de-
tected if pc > ph in any frequency band [6].
Although the model performed very well during the MIREX
evaluations, it suffers from detection of too many false posi-
tives [6]. We tested the behavior of the COG’s on test signals,
consisting of pure sinusoids, a noise of various shapes and iso-
lated sounds of various instruments. The model turns out to be
sensitive to the low frequency modulations of sinusoidal signals
(eg. vibratos). Another problem is that during the decay phase
the SNR of a music signal becames very low. The symptom is
the large number of random transient peaks spread across the
frequency bands, that are hard to filter out with the model de-
scribed above.

3. Onset detector based on Bayesian
Surprise

3.1. Partition of the spectrum

The system presented in [6] divides the spectrum into overlap-
ping, equally spaced frequency bands, so each band forms a
“bin” which contains a number of transient peaks. In our opin-
ion this scheme does not take into account the fact that the dis-
tribution of the frequencies in music signals is generally not
uniform.
Being inspired by the ideas coming from the algorithms used for
multi pitch estimation [7], we decided to propose an alternative
partition, where the audible range 20 Hz - 20 kHz is partitioned
into unequally spaced bands. Each one has the center in the fre-
quency of a note belonging to the tempered scale. The borders
of the bands fl, fu (lower, upper) are

fl(i) =
fc(i)− fc(i− 1)

2
,i ∈ [1, B − 1] (5a)

fu(i) =
fc(i+ 1)− fc(i)

2
,i ∈ [1, B − 1] (5b)

where fc is the center frequency of the band, i is the index
of the band andB is the overall number of the bands. The center
frequency can be expressed as

fc(i) = fref
12
√
i− iref (6)



The fref is the A4 (the reference pitch, 440 Hz), iref is the cor-
responding, 49th key from the left end of a piano.
The numbers of peaks Np and the number of transient peaks
Nt are computed for each band separately. However the num-
ber of the bands is relatively high (B ≈ 170). To reduce the
dimensionality of the output, Np and Nt are summed up for the
frequencies corresponding to the h harmonics respective to each
piano key. The number of harmonics is a variable dependent on
the average RMS energy EdB of the spectrum in each frame:

h = bEdB + 90

20
c (7)

In consequence, the weakest harmonics are then not taken into
account as being potentially noisy. The output of the pre-
processing stage described above is then 88 pairs of values
(Nt, Np) for each frame.

3.2. The Bayesian Theory of Surprise

Onsets of notes in a music stream may be visualized as promi-
nent changes in the FFT spectrum. When compared to the
number of the STFT frames the typical audio signal is divided
into, frames where onset events are present are relatively rare.
In between, through a majority of time, we would expect that
the spectrum would remain much less variable in time and the
distribution of the number of transient peaks remains moreless
constant within a frequency band [6]. The onsets may be then
treated as surprising (novel) events. Itti & Baldi [8] propose
to measure the degree of surprise by computing a Kullback-
Leibler divergence [9] between the distribution representing
prior beliefs of a family of models and the distribution repre-
senting beliefs of the models after exposure to the data

S(D,M) =

∫
M
P (M |D) log

P (M |D)

P (M)
dM (8)

whereM is a family of models,M is a model representing a be-
lief and D is a random variable representing the input data. Itti
& Baldi [8] have compared the measure expressed in equation
(8) with other metrics of novelty and they claim the proposed
measure is the most consistent with observations made on hu-
mans. Although their experiment proved a successful applica-
tion of the measure for computer vision, the surprise is formu-
lated generally enough to be used in different domains as well,
requiring only that the prior P (M) and the posterior P (M |D)
distributions are available.

3.3. Beta-Binomial Model

The model described in Section 2.2 compares the current state
with the state from a relatively short past (a few hundreds of
miliseconds) [6]. Moreover, the binomial distribution essen-
tialy models a sequence of independent trials. Thus, no long-
time dependencies can be represented by the system. In hope to
improve the accuracy of the detection, we propose a Bayesian
solution which holds a memory of all the past states.
The number of transient peaks within each band is traced by a
model consisting of a binomial node that represents our obser-
vations and a hidden Beta node representing beliefs about the
transient peaks in each frame. The Beta distribution has been
chosen because it is a conjugate prior to the binomial distribu-
tion. That eliminates the necessity of implementing complex
methods to perform the inference, eg. Markov Chain Monte
Carlo, as the conjugate posterior has the same form as the prior.

If PM represents the model beliefs about the number of tran-
sient peaks in a frame and PD represents the distribution of
transient peaks in the frame k

M ∼ Beta(αk, βk), (9a)
D ∼ Binom(Nt, Np −Nt) (9b)

The density of the prior PM is dependent on the two parameters

PM (αk, βk) = Ckx
αk−1(1− x)βk−1 (10)

where

αk ≥ 0, βk ≥ 0, x ∈ [0, 1],

αk + βk > 0, Ck =
Γ(αk + βk)

Γ(αk)Γ(βk)
.

Γ is the Gamma function. With theNt transient peaks andNp−
Nt non-transient peaks in a frame we may use the update rule
for a conjugate Beta-Binomial pair

αk+1 = αk +Nt, βk+1 = βk + (Np −Nt). (11)

The posterior probability distribution of the transient peaks is
then PM (αk+1, βk+1). In case of the conjugates, the surprise
function given by Eq. (8) can be derived exactly from Eq. (10)
and Eq. (11) [12].

S(D,M) = log
Ck
Ck+1

+Nt[Ψ(αk + βk)−Ψ(αk)]

+ (Np −Nt)[Ψ(αk + βk)−Ψ(βk)]

(12)

where Ψ is the derivative of the logarithm of the Gamma func-
tion. So in each frame for each band, the models are updated
with theNt andNp−Nt, then the surprise is computed, finally
the posterior becomes the prior and the cycle repeats until all
the frames of the audio signal have been processed. In practice
the equations (11) have to be modified by introducing a con-
stant called “forgetting factor” ζ in order to avoid numerical
overflows (Ψ and Γ functions grow with the order of n!).

αk+1 = ζαk +Nt, βk+1 = ζβk + (Np −Nt). (13)

Normaly ζ ≤ 1, but it should be as close to 1 as possible, as
it introduces a systematic error to the inference, while still pre-
venting overflows. In our experiments ζ = 0.95.
Originally the authors stated that the surprise should be com-
puted as an integral over all possible models [8]. However we
have observed empirically that the family of models with differ-
ent priors but the same input data converges to a single, optimal
set of parameters exponentially with the number of incoming
data. Thus, to reduce the computational complexity we decided
to use only one model per band with the initial uniform prior
(α0, β0) = (1, 1)

3.4. Selection of the onset candidates

The output of the model is a surprise matrix SM (frame, band)
of real values S(D,M). We are interested in finding the mo-
ments of the sudden increase of the surprise as we suspect them
to be the most certain candidates for the onsets. However val-
ues of SM are usually noisy, so for smoothing and amplifying
of the desired growth of surprise, we correlate the surprise in
each band separately with an appropriate spike.

spike = {min(SM ), 2S̄M , S̄M} (14)



The spike signal is a discrete signal described as a set of only
three consecutive values: min(SM ) is the minimum value
found in SM and S̄M is the arithmetic mean of all the elements
of SM . Then we sum the correlated matrix bandwise, obtain-
ing a vector with a single value of summary surprise for each
frame. Again we correlate it with a spike constructed as in Eq.
(14), but taking the minimum and the mean values of the vector
instead of the matrix. As a result we obtain a surprise curve over
time. The local maxima of the curve, computed by finding the
changes of its derivative are considered as the onset candidates.

3.5. Filtering of the onset candidates

Unfortunately, among the onset candidates there are still frames
not containing onsets. It happens for two reasons, one is that
the surprise points at the novel moments in the signal, the sec-
ond reason is that the novel moment can be either a rapid in-
crease but also a rapid decrease of a number of transient peaks.
As a result, a surprise function contains two neighbouring local
maxima, of which only one may be an onset. Another issue is
that peaks associated with noise can also be surprising, and the
model computes the surprise for each band separately. Thus, a
mechanism that processes the information from events that oc-
cur simultaneously across the bands but at the same moment of
time, must be introduced.

3.5.1. Filtering out unexpected drops of the number of transient
peaks

In order to check if the number of transient peaks is increas-
ing or decreasing, a local history of Fh frames preceeding the
candidate, has to be checked. In our experiments we assumed
Fh = 4, for hop size of 512 samples and window size of 4096
samples. For each band from the set of B bands, we construct a
family of B Beta-Binomial models and each model has one of
the possible B set of parameters, so the total number of models
is equal to B2. Each model from the family is updated with the
data from Fh frames. The data are the number of the bands in
each frame where the number of transient peaks has crossed the
mean from Fh frames (within the same band). Among the mod-
els, the one with the smallest surprise is chosen as the one that
supposely fits the data the best. From the model we compute
the likelihood of the increase of the transient peaks for each of
Fh frames, and if the frame with the maximum likelihood is the
candidate frame, we keep the candidate, otherwise it is rejected.

3.5.2. Detection of the synchronous bursts

A Beta-Binomial model is used once more, here to estimate
how many local maxima of the SM are simultaneous. As in
the above paragraph, the candidate frame must be processed
with Fh history frames, because sometimes onsets are charac-
terized by joint, synchronous bandwise, local maxima of the
surprise matrix, but spanning across two consecutive frames.
This seems to be an artifact introduced by the windowing, when
the onset is placed in between the frames. Using more frames
(here Fh) ensures that the onset can still be found even if the
preprocessing-stage STFT window is relatively long (because
of the well-known tradeoff between spectral and temporal reso-
lution).
In this stage we use a simple but interesting property of sur-
prise function that allows to estimate the “flatness” of the data.
To illustrate the property with an example, let us imagine a
person performing two series of throws of a coin (the possi-
ble outcomes: H-head, T-tail). The first series of let us say

Nth = 10 throws looks as follows: H,T,H,T,H,T,H,T and, for
the second series the outcome is H,H,H,H,H,T,T,T,T,T. In tra-
ditional Bayesian statistics, regardless of the prior beliefs we
have before the person throws a coin, the posterior probabilities
for both outcomes are close to 0.5, suggesting that the coin is
fair. However, the posterior will not tell us anything about the
changes of the distribution representing our beliefs about the
fairness of the coin, along the consecutive Nth throws. But if
we observe the curves of surprise, updated after each throw, we
can see, that for the first series the function has a lot of peaks
although the height of the peaks is dropping with time. For the
second series, the surprise has only two peaks, one after the first
throw and one after the fifth throw, but they are higher and have
similar heights. The surprise drops with time with the speed
proportional toN−1

th .In our case the occurence of the local max-
imum of SM in the band b and one of a two neighbouring frames
k, k+1, k ∈ [kc−Fh, kc], corresponds to throwing a head (for
example) with kc being the position of the onset candidate. We
can measure the flatness as follows

F =
S̄(k)

Nm
(15)

where S̄(k) is the mean of the surprise over the frequency bands
in the two frames and Nm is a number of local maxima of
S(k).We are interested in the highest F possible because the
higher the F , the more synchronized are the peaks of SM . Our
experiments have shown that the condition F > 3.5 for ac-
ceptation of an onset candidate provides the best results. Local
maxima of the SM are shown in the Figure 2.
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Figure 2: The occurence of the local maxima of the surprise vs
bands. The horizontal axis represents time in frames (512 sam-
ples / frame), whereas the vertical axis represents bands. The
vertical bars are the ground truth onsets, surrounded by gray
rectangles representing the tolerance window (50 ms). A local
maximum is represented by a black spot. Between the onsets
the distribution of the maxima is random, but at the onsets the
maxima form vertical lines.

4. Evaluation
4.1. Data set

The data set is a collection of 170 excerpts of music, each
one has length of approximately 30 seconds. The collec-
tion comes from Digital Speech and Signal Processing re-
search group at the Electronics and Information Systems de-
partment of Ghent University and it can be downloaded



at http://dssp.elis.ugent.be (see the “Downloads”
section). The files are in the WAV format, mono and the sam-
pling frequency is equal to 44100 Hz. It is annotated with the
onset times. The set seems to be balanced in the sense of genre
and rhythmic complexity.

4.2. Results

To estimate the performance of the model we use standard F-
measure:

F =
2PR

P +R
(16)

where

P =
tp

tp+ fp
R =

tp

tp+ fn

where tp is the number of true positives, fp is the number of
false positives and fn is the number of false negatives. As true
positive we consider the time of a detected onset that differs
from the time of the corresponding ground truth onset, less than
50 ms (a standard tolerance window used, for example, in the
MIREX 2007). False positive is an onset that is detected but
no ground truth onset lies closer than 50 ms to it. Finally, false
negative onset is a ground truth onset for which no detected on-
set lies closer than 50 ms.
As we currently cannot compare our model with the original ap-
proach by Röbel [6], we have compared the performance of the
model with an onset detector that is a combination of the High
Frequency Content and Complex Domain methods, which has
been being used for a long time in our lab [1]. To provide a
reference to the current state of the art we also tested the detec-
tor made by Lacoste & Eck [5] as an example of the systems
that apply machine learning mechanisms (in this case Artificial
Neural Networks) for onset detection. The results are presented
in the Table 1. The first two rows of the table illustrates the

Detector Precision Recall F-measure
Lacoste & Eck, 2008 0.72 0.66 0.67

HFC+Complex domain 0.73 0.58 0.63
Bayesian, filtering enabled 0.68 0.52 0.57
Bayesian, filtering disabled 0.22 0.89 0.33

Table 1: Performance of the onset detectors.

performance of the two reference onset detectors. In the third
row are the results obtained with the detector part only, up to
the stage described in 3.4, in order to see how many onsets are
missing in average. Finally, the last row of the table shows the
performance achieved by the full system.
Figure 3 shows an example where the model output was per-
fect, reaching F-measure = 1.0. The input was a short passage
of drums. As we can observe, the overall probability of an oc-
curence of a transient peak is very low, except the in places
where the onsets have been marked. Thus the onset events are
novel and are marked correctly by the detector. Please also note
the sudden growth of surprise just after the first onset. This is
a moment of sudden drop of the number of transient peaks. As
we see, it is also a surprising event, but the filter was able to
distinguish it from the events that are real onsets.

5. Discussion and conclusions
Our aim was to prove that a marriage of Bayesian models with
traditional Digital Signal Processing techniques can provide
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Figure 3: Example output of the model. The horizontal axis
represents time in frames (512 samples / frame). The vertical
bars are the ground truth onsets, surrounded by gray rectan-
gles representing the tolerance window (50 ms). The top image
represents the spectrogram. The number of transient peaks per
band is shown at the image below the top. The third image is the
plot of the logarithm of the surprise (SM matrix) vs. bands. The
final, bottom plot is the surprise function. In the initial phase
the surprise is always very high, regardless of the input data.
However, the model learns with exponential speed, converging
quickly to a stable state.

working solutions to some Sound and Music Computing prob-
lems. Our prototype solution, based on a very simple Bayesian
model, came close with the performance to the standard so-
lutions, entirely based on the DSP algorithms. The approach
presented in this paper also introduces an unique look to the
problem of onset detection, taking into account the timing in-
formation. At the bottom plot of Figure 3 (the surprise curve)
we can observe that the height of the surprise function depends
not only on the intensity of the event but also on time, so the
onsets that are closer to each other show smaller changes of
surprise. This property helped to distinguish between true on-
sets and false positives.
Although the overall performance leaves still room for improve-
ment (see Figure 4), especially if compared to the current state
of the art (see Table 1), we have shown that the onset detec-
tion done by the model can be perfect in case of drum passages,
where the distributions of the transient peaks in case of onsets
and inter-onset intervals differ significantly. Bayesian surprise
allowed us to recognize synchronous events rapidly, without us-
ing complicated methods of pattern recognition like artificial
neural networks or support vector machines. It is important to
mention that the inference and the computation of surprise in
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Figure 4: Example output of the model for a rock music excerpt
with a poor Signal-To-Noise ratio. The model performance is
low, especially for the first bar (frames 100-200), as the dis-
tortions created by an electric guitar generate high amount of
transient peaks. Only the beats are discriminant enough to be
considered as surprising, mainly due the wide spectrum of some
percussive instruments. For axes and plots description see Fig-
ure 3. The F-measure for the excerpt was equal to 0.62.

the conjugate prior based models is very simple and robust. It
does not require any conditional instructions in the code, except
optional range checking of the input variables and each model
is independent. These properties make the models particularly
suitable for Graphics Processor Unit implemementations (using
libraries like eg. OpenCLTMor CUDATM).
In contrast to the Röbel’s detector [6], our system has fewer pa-
rameters and it learns from the data in an entirely unsupervised
way. That means it works seamless and produces repeatable re-
sults, not requiring tuning to a specific collection of data.
The system offers multiple, possible directions for improv-
ing the overall performance. Currently the distribution
Beta(αk, βk) allows learning the most probable belief only,
so the surprise depends mainly on the departure from the opti-
mal αk, βk. That is why any peak of surprise can be a potential
candidate for an onset. A natural solution of the problem are
Hierarchical Bayesian Models [10]. Treating the parameters
of the belief distribution αk, βk as random variables opens a
possibility of learning deeper time dependencies at the price of
significant complication of the inference algorithm. Moreover,
the derivation of an exact, analytical formula for the surprise
is usually impossible in this case. Another possibility is treat-
ing surprise as a random variable and classifying the surprising
points depending on the distribution of this variable. However it
seems to be difficult to classify due to its time dependency and

to a wide range of possible values, therefore a machine learning
method that could deal with these difficulties would have to be
applied.
In any case, the most reasonable direction of the development
seems to be incorporation of prior knowledge about music, re-
flected for example by the transition probabilities of the lenghts
of the inter-onset intervals. Desain and Honing suggested that
our rhythm perception may be driven by Bayesian learning [11]
and we hope to obtain a major improvement by modeling higher
level time dependencies present in music. The design of our
model is particularly suited for such an extension.
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