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Abstract
This paper examines the problem of distant microphone speech
recognition in noisy indoor home environments. The noise
background can be roughly characterised in terms of a slowly
varying noise floor in which there are embedded a mixture of
energetic but unpredictable acoustic events. Our solution to
the problem combines two complementary techniques. First, a
soft missing data mask is formed which estimates the degree to
which energetic acoustic events are masked by the noise floor.
This step relies on a simple adaptive noise model. Second, a
fragment decoding system attempts to interpret the energetic re-
gions that are not accounted for by the noise floor model. This
component uses models of the target speech to decide whether
fragments (time-frequency regions dominated by a single sound
source) should be included in the target speech stream or not.
This combined approach is able to achieve a performance that
is modestly superior to that achieved using speech fragment de-
coding without an adaptive noise floor. Our experiments also
show that speech fragment decoding performs far better than
soft missing data decoding in variable noise, achieving 73%
keyword recognition accuracy at -6 dB SNR on the Grid corpus
task and substantially outperforming multicondition training.
Index Terms: Noise robust speech recognition; Fragment de-
coding; Missing data; Reverberation

1. Introduction
This paper considers the problem of distant microphone speech
recognition in an everyday domestic environment. This prob-
lem is interestingbecause solutions would open the door to a
new generation of applications. In particular, solutions would
enable home-automation applications that would be valuable in
the context of an increasingly ageing society. However, the
problem isdifficult because our homes tend to be noisy and
unpredictable places that lie a long way outside the operating
conditions of current speech recognition technology: the target
speech will be part of a heterogeneous mixture of competing
sources; the combined noise energy may be comparable to or
even greater than that of the speech; there will be significant
room reverberation effects that will hinder source separation
techniques.

There exists an extremely diverse set of techniques for
noise-robust speech recognition but they can be loosely cate-
gorised into two broad approaches, which we will term,noise
estimationandsignal separation.

Noise estimation approaches rely on it being possible to es-
timate a model of the spectral characteristics of the noise back-
ground. This model, which might be as simple as an average
noise spectrum, is then used to either ‘subtract’ the noise from
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the mixture (e.g. spectral subtraction [1]), estimate the noise
masking pattern (missing data techniques [2]), or to adapt the
speech model via a model combination technique (e.g. [3, 4, 5]).
These techniques clearly depend on the quality of the noise
model and work well in situations where an accurate model
can be easily estimated, e.g. where the noise is known to be
quasi-stationary or to have predictable dynamics that allow it
to be tracked with some degree of certainty (as represented by
Fig. 1b). These conditions are seldom met in everyday listening
conditions, where the noise is itself a mixture of sources with
unpredictably changing levels of activity.
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Figure 1: Schematic time-frequency representation of speech
in different backgrounds: a) Speech with no background noise;
b) Speech in quasi-stationary noisy; c) Simultaneous speech; d)
Speech in natural noise conditions.

In conditions where the noise spectrum cannot be readily
estimated, a signal separation based approach to robustness can
sometimes be applied. Such approaches exploit the continu-
ity of primitive signal properties (e.g. pitch or location) to al-
low some form of source separation prior to recognition. In
multi-microphone systems location estimates can be used. Al-
ternatively, pitch can remain an effective cue even in single-
channel mixtures. For example, pitch was exploited by the ma-
jority of systems competing in the recent Pascal Speech Sepa-
ration Challenge evaluation [6]. However, by focusing on sepa-
ration of instantaneous speech mixtures in noise free conditions
(Fig. 1c) this challenge was not particularly representative of
the demands of real noise-robust systems.



The domestic noise backgrounds that we employ in the cur-
rent work are challenging because they do not have a single
‘character’. Instead, they can be broadly described as having an
ambient, slowly varying noise floor that is overlaid by unpre-
dictable acoustic events such as speech, human movement and
mechanical sounds (Fig. 1d).

The current work studies distant microphone speech recog-
nition in this environment, comparing a noise estimation ap-
proach – soft Missing Data (MD) and a separation based ap-
proach – Speech Fragment Decoding (SFD). The former is able
to perform well during segments where the background is rela-
tively ‘uneventful’ and good noise floor approximations can be
estimated. The latter approach uses cues to affect a partial sep-
aration of sources, but may struggle to handle the ambient noise
floor which often exhibits weak pitch and localisation cues.

This paper also examines ways in which the soft MD and
SFD techniques may be combined to take advantage of the com-
plementary strengths of noise modelling and signal separation
approaches. Section 2 briefly describes the construction of the
background noise corpus and the speech recognition task. Sec-
tions 3 reviews soft MD and SFD and compares their ASR per-
formance. Section 4 provides an approach for combining the
two techniques and presents novel ASR results. Analysis of
the results drives a discussion of more sophisticatedly combined
systems in Section 5. Section 6 concludes this paper.

2. Task
All the ASR experiments were conducted using the CHiME
corpus [7], which accurately replicates natural contamination.
Briefly, short speech utterances are reverberated with room
impulse responses measured at various locations in different
rooms. They are then mixed at a normal speaking level with
domestic noise recorded at the corresponding locations. The
SNRs range from -6 dB to 18 dB at an interval of 3 dB.

In CHiME, test material with a specific SNR is generated
by selecting segments with noise at the desired and naturally
occurring levels, rather than taking the same noise, adjusting its
levels, and then adding it to clean speech. This is a more real-
istic procedure, because different SNR bands typically contain
noises of different types. In low SNR conditions it is common to
find loud but often short-duration noises (e.g. a child shouting),
while in quieter conditions noises are more stationary.
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Figure 2: Each line shows the histogram contour of utterances
in different noise variance bands for one SNR condition.

Fig. 2 shows histogram contours of test utterances in differ-
ent noise variance bands. It is clear that each SNR has a sub-
stantially different noise profile. The noise is mostly stationary

at the high SNR end and becomes more variable at lower SNRs.
Test speech is taken from the Grid corpus [8]. There are

51 words in the vocabulary and the ASR task is to identify 2
keywords – the letter and the digit – in each utterance. The av-
erage recognition accuracy for the 2 keywords is used to report
the Keyword Accuracy, giving the chance level for this task at
around 7%. In this paper the training and test condition is fixed
to a single location in one room (lounge200cmaz0). Therefore
the training data and test data have matching reverberation.

The CHiME corpus provides binaural signals, but the ASR
evaluation reported here employs monaural signals, which are
formed by averaging the binaural signals in the time domain.
No binaural cues are employed in this work.

3. Baseline Recognition Systems
3.1. Standard ASR systems

We first evaluated two standard ASR systems. The first system
employed standard 39 dimensional MFCC features (with deltas
and accelerations) plus Cepstral Mean Normalisation (CMN).
Speaker-Dependent (SD) word-level Hidden Markov Models
(HMMs) were used, following the ‘standard’ model setup of
the 2006 Speech Separation Challenge [6]. The SD HMMs
were produced by performing 4 more iterations of EM train-
ing over a set of well trained speaker-independent HMMs, us-
ing the 500 training utterances for each speaker. Each HMM
state employed 7-component Gaussian mixtures with diagonal-
covariance. There was no retraining on noisy data.

The second baseline employed multicondition training. The
HMMs from the first baseline were retrained using noisy train-
ing data, constructed by mixing reverberated training speech
with CHiME noise at SNR levels ranging from -6 dB to 21 dB.
The noise used in multicondition training came from the same
noise recordings used in mixing test data.

A standard Viterbi decoder was employed to recognise
each utterance using the set of SD models corresponding to
the speaker who spoke that utterance, with prior knowledge of
speaker identities [9].

3.2. Missing data based systems

Both the soft MD system and the SFD system employ marginal-
isation based missing data techniques [2] at core. When an ob-
served feature vector,x, may be partially corrupted by noise,
we can denote the reliable part asxr and the unreliable part as
xu. If the state distributionp(x|q) is modelled by a mixture
of Gaussian distributions with diagonal covariance, the distri-
bution for each componentk can be evaluated as the marginal
distribution ofxr by integrating overxu:

p(x|q, k) =
Y

i∈r

p(xi|q, k)
Y

i∈u

Z xi

−∞

p(x′

i|q, k)dx
′

i (1)

wherep(xi|q, k) is the univariate Gaussian distribution.
Marginalisation based techniques require spectral features:

missing features are localised in the spectral domain but not
in the cepstral domain [2]. In this work We employed spec-
tral features that are the auditory equivalent to a spectrogram,
the cochleagram [10]. They were produced via a 32-channel
Gammatone filterbank distributed in frequency between 50 Hz
and 8000 Hz on the Equivalent Rectangular Bandwidth (ERB)
scale [11], log-compressed and supplemented with deltas to
form 64-dimensional feature vectors. Both missing data based



systems employed speaker-dependent HMMs trained on rever-
berated speech, and there was no retraining for noisy conditions.

i. Soft missing data system

In Eq. 1 the missing data mask is assumed to be binary.
Performance loss caused by irreversible Time-Frequency (T-F)
labelling errors can be limited by introducing a soft missing data
mask [12], in which each T-F pixel is associated with a probabil-
ity value in the range of[0, 1], expressing a degree of confidence
in the reliability of the data. With a soft maskp(x|q, k) can be
evaluated as a weighted sum of likelihoods and marginals:

p(x|q, k) =

N
Y

i=1

„

wip(xi|q, k) + (1 − wi)
1

xi

Z xi

−∞

p(x′

i|q, k)dx
′

i

«

(2)

wherewi is the soft value for theith dimension andN is fea-
ture dimensionality. The use of soft masks has been shown to
improve recognition accuracy significantly [13].

Previous attempts at deriving MD masks have often made
use of local SNR estimates. For example, [13] assumed speech
is absent at the beginning of each utterance on the Aurora 2
task, and noise spectrum is estimated by averaging the first 10
frames. The technique works well if the noise is sufficiently
stationary – at least within the duration of each utterance. This
is a poor assumption in many situations. We therefore employ
an adaptive noise floor tracking technique in this work.

In brief, a Gaussian Mixture Model (GMM) with diagonal
covariance was fitted to a rolling buffer of noisy speech, and the
component with the lowest energy was assumed to be the noise
floor. The GMM was updated with a half second increment,
producing a noise floor for every half second. Since adjacent
spectral channels are not independent, we chose only a subset (6
channels) of the full frequency band so that features were nearly
independent. Our experiments show that recognition accuracies
were not sensitive to the number of Gaussian components and
the buffer size1.

A typical output of this adaptive noise floor tracking tech-
nique is shown in Fig. 3. The upper panel is the cochleagram
of a 5-second long speech/noise mixture in the CHiME corpus.
The middle panel shows the estimated noise floor updated every
half second. The regions where local SNR estimates are greater
than 0 dB are displayed in the lower panel. Our preliminary ex-
periments show that the MD system employing this technique
performed substantially better than using masks generated by
simply averaging 10 frames prior to the speech onset.

Soft missing data mask values were produced by applying a
sigmoid function to the local SNR estimates. The centre of the
sigmoid function serves as the SNR threshold for computing
soft MD masks, which was fixed to 9 dB for all test conditions
after optimisation on the development set.

ii. Speech fragment decoding system

The missing data system only considers a single segrega-
tion hypothesis, i.e. the missing data mask, which could be in-
correct. A better solution would be to consider various segre-
gation hypotheses and let the top-down models decide which
one best explains the acoustic scene. To fully couple the segre-
gation problem with recognition, the SFD framework searches
for the word sequence (W ) and segregation hypothesis (S) that

1We used a GMM with 2 components and a buffer of 5 seconds.
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Figure 3: Illustration of adaptive noise estimation using a GMM
based noise floor tracker. The GMM is adapted every half sec-
ond using a 5-second buffer.

together are most probable, given the noisy signal (Y ):

Ŵ , Ŝ = arg max
W,S

P (W, S|Y )

= arg max
W,S

P (W |S, Y )P (S|Y ) (3)

P (W |S, Y ) is equivalent to missing data decoding given a fixed
mask,S, andP (S|Y ) is the segregation model [14]. The search
is now being conducted over the joint space of word sequences
and segregation hypotheses. In practice, given each segrega-
tion, the word sequence dimension of the search can be effi-
ciently performed using missing data techniques. The segre-
gation search is then equivalent to selecting the best missing
data mask. An exhaustive search is clearly not practical. For-
tunately, most of the segregation hypotheses do not need to be
evaluated. Primitive grouping principles can be employed to
group T-F pixels according to local correlations of their char-
acteristics. This process results in the acoustic mixture being
divided into multiple localfragmentsin the spectro-temporal
plane. Barker et al. [14] show that decoding can be performed
in an efficient manner using fragments.

The concept of fragments is consistent with the underlying
principles of auditory scene analysis. They are the physical rep-
resentation of the components from which perceptual ‘auditory
streams’ are built [15]. In SFD, each fragment is represented by
labelling all its T-F pixels with a unique positive integer. Find-
ing such fragments is an easier task than separating the target
utterance from the noise background directly because fragment
foreground/background identities do not have to be decided un-
til the recognition stage when top-down models are available.

In this work we employ techniques for tracking multiple
pitches of simultaneous sounds and use this information to iden-
tify fragments [16, 17]. The idea of fragments has also been
employed to integrate different auditory grouping cues for bet-
ter localisation of sound sources in reverberant recordings [18].

3.3. Results

Fig. 4 shows the ASR results of these baseline systems. Firstly,
the MFCC+CMN system performed reasonably well in condi-
tions with little noise, but its performance decreased rapidly
towards the low SNR end. Multicondition training provided
considerably better resistance to noise corruption, with a more
moderate decreasing rate in recognition accuracy.
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Figure 4: Recognition results for SFD compared against those
for soft MD and various standard baseline ASR systems.

Secondly, the soft MD system produced higher recognition
accuracies over the multicondition training system (stars) con-
sistently across all SNR conditions, despite that the MD system
did not have access to noisy speech during training.

Thirdly, the SFD system substantially outperforms the mul-
ticondition training system and the MD system at SNRs below
9 dB. This is not surprising given the non-stationarity nature
of the noise. In these conditions the noise is not just louder
but also less stationary (see Fig. 2). For the MD system the
noise can become so unpredictable that it is almost impossible
to track. Therefore many T-F regions may be incorrectly given
high SNR estimates. We notice that for the soft MD system, in
order to compensate the SNR estimation errors, a SNR thresh-
old substantially higher than 0 dB was needed when computing
the soft mask (9 dB was used).

The MD system produced slightly better results than SFD
at SNRs of 15 dB and 18 dB where the noise is fairly stationary,
but the difference is not significant. Better performance may
be expected since the MD system makes narrow assumptions
about the noise, which give it an advantage when the assump-
tions happen to be correct.

Finally, results of a MD system using ‘oracle’ masks [2]
are also presented. The oracle masks were derived from the
true local SNR for each T-F pixel with access to the premixed
speech and noise. Those pixels with a local SNR> 0 dB were
labelled as ‘reliable’. Although the oracle masks are artificial,
their results demonstrate the upper boundary of missing data
based ASR systems.

The oracle mask results remain almost flat across the SNR
range. On previous tasks, such as Aurora 2, we observed a slight
decrease at low SNRs. This is because in CHiME the SNR-
dependent datasets are not artificially produced but relate to op-
erating conditions in a real environment. The level of speech
masking no longer increases linearly as the SNR decreases. In
fact, at 0 dB SNR the area being labelled as reliable in the ora-
cle mask on this task is 67% of that at 15 dB SNR, compared to
only 39% on the Aurora 2 task.

4. Combining MD and SFD
4.1. Motivation

A detailed analysis shows the error patterns for the soft MD
system and the SFD system are different and complementary.

Fig. 5 shows histogram contours of ASR error differences be-
tween the two systems in matched pairs for the 3 dB SNR con-
dition. The squares show when the MD system correctly recog-
nises more keywords than the SFD system for each utterance,
while the triangles show the cases when SFD performs better.
The histograms are computed against noise variances in the test
set. Although the two systems produce close overall accuracy,
it is clear that the MD system copes better with stationary noise
and the SFD system performs better when noise becomes more
variable. The complementary error pattern suggests that it may
be possible to combine the two systems to produce better re-
sults. In this section we present some initial effort and results.
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Figure 5: Histogram contours of utterance-level recognition er-
ror differences, showing different effects of noise stationarity
on MD and SFD, SNR = 3 dB.

4.2. Method

In domestic settings and many other natural listening conditions
the auditory scene can be approximately described as a slowly
varying noise floor plus highly unpredictable acoustic ‘events’.
The idea of combining MD and SFD is to use the noise floor
tracker to remove slowly varying noise and then employ SFD to
deal with unpredictable acoustic events.

We separately generated soft MD masks (using the adap-
tive noise tracker) and fragments (using harmonicity based tech-
niques). The SNR threshold for computing soft masks was op-
timised and the best results were obtained with a threshold of
-3 dB. The T-F pixels with values< 0.5 in the SNR-based soft
mask were then identified. These regions have low SNR esti-
mates and the observations are most likely to have originated
from some stationary noise sources. These T-F pixels were ex-
cluded from any fragments and were forced to be interpreted as
part of the noise background during fragment decoding. The
remaining fragments were employed by SFD as normal.

Fig. 6 illustrates this procedure. Fig. 6a is the cochleagram
of a speech/noise mixture. The missing data mask derived from
local SNR estimates is shown in Fig. 6b, where regions with
soft value< 0.5 are displayed in black. Fragments identified by
harmonicity analysis are shown in Fig. 6c using different shades
of grey. Fig. 6d shows the fragments used by the combined
system, where regions in white have low SNR estimates and are
forced into the background. The procedure is akin to using the
missing data mask in Fig. 6b to filter the fragments in Fig. 6c.

Soft decisions were also employed in the combined system
using Eq. 2. For the identified low SNR regions their corre-
sponding soft MD mask values (< 0.5) were employed during
decoding so that these pixels had the same contribution as in the
MD system. For the rest T-F pixels their soft MD mask values
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Figure 6: Combining soft missing data and speech fragment
decoding techniques: a) Cochleagram of a speech/noise mix-
ture; b) Missing data mask derived from local SNR estimates;
c) Fragments identified by harmonicity analysis, represented as
regions with different shades of grey; d) Fragments excluding
low SNR regions (white).

(> 0.5) were not used. Instead we employed the confidence
measures obtained from harmonicity analysis [17].

The combined system benefits over the soft MD system in
that the regions assigned high SNR estimates by the adaptive
noise floor model are no longer always considered to be part
of the foreground. Instead, they are divided into fragments,
each of which may belong to either the speech foreground or
the noise background. The foreground versus background iden-
tities of these fragments are decided with top-down knowledge
from speech HMMs. So, fragments which are due to some un-
expected noise source (e.g. a child shouting) will generally be
rejected during fragment decoding because they are unlikely to
match the speech HMMs.

The combined system differs from the SFD system because
fragment decoding is only applied to regions that are not ac-
counted for by the adaptive noise floor model, i.e. the noise
floor is marked as being part of the background in all frag-
ment labelled hypotheses. The plain SFD system would, by
contrast, segment the regions dominated by the noise floor into
fragments (often poorly because the noise floor tends to exhibit
weak grouping cues) and then may be prone to errors if any of
these fragments happens to match the speech models.

4.3. Results

Fig. 7 shows that the combined system exhibits improved per-
formance over both standalone systems at SNRs below 6 dB. To
further investigate the error reduction, we computed the number
of utterances that produced keyword errors in different noise
variance bands. Fig. 8 shows such histograms (contours) at 3
dB SNR for the MD system, the SFD system, and the combined
system, respectively. Comparing the histograms of the MD sys-
tem (squares) and the SFD system (triangles), we can again see
that MD was prone to errors in more variable noise while SFD
suffers more in stationary noise. The combined system (dashed
line) improves over the SFD system by reducing keyword errors
mostly for utterances with stationary noise (variance< 0.1),
and the improvement over the MD system mainly comes from
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Figure 7: Results for the system combining soft MD and SFD
in various noisy conditions.

the cases in less stationary noise (variance> 0.1).
For SNRs above 6 dB the combined system did not pro-

vide any significant improvement. A detailed error analysis (see
Fig. 9) shows that the combined system actually reduced key-
word errors for utterances with stationary noise over the SFD
system alone. The improvement is, however, offset by increased
errors for utterances with more variable noise, probably due to
less accurate SNR estimation in these cases. An improved noise
floor tracking component would help solve this issue.
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Figure 8: Histogram contours of utterances that produced key-
word errors in different noise variance bands. SNR = 3 dB.

5. Discussion
We notice that in order to accommodate SNR estimation errors
the soft MD system required an SNR threshold greater than
0 dB (9 dB was used) for computing soft MD masks. When
the noise is less stationary the noise floor tends to be under-
estimated, causing many noise-dominated T-F pixels to be given
high SNR estimates. By contrast the combined system did not
need such a high SNR threshold (-3 dB was used). The regions
with high local SNR estimates were divided into fragments, and
the system has the ability to include it as part of the background
if it is dominated by noise.

This paper has presented a relatively straightforward ap-
proach for combining a noise model-based approach and a
source separation-based approach to robust speech recognition.
Essentially the noise model is being allowed a first view of the
data and then separation techniques are being reserved for el-
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Figure 9: Histogram contours of utterances that produced key-
word errors in different noise variance bands. SNR = 6 dB.

ements that are poorly predicted by the model. Although the
combined system produces only small gains the work presents
a firm baseline for investigating more sophisticated approaches:

Improved noise floor tracking

We have employed a simple frame-based approach for esti-
mating the spectra of the noise floor. This relies on there being
regular instances when no acoustic events are active. A more
sophisticated estimator would be able to use spectro-temporal
glimpses of the background in a more opportunistic manner.
For example, performance might be improved using trackers
that operate within frequency sub-bands.

Coupling noise floor estimation and fragment analysis

In the current system the noise tracking and fragment sepa-
ration are conducted independently of each other. Options exist
for closer coupling. For example, the ongoing noise floor esti-
mate could be used to inform parameters of the pitch estimation
and across frequency pitch grouping processes that are essential
to the harmonic fragment generation. Working in the other di-
rection, spectro-temporal regions that are clearly implicated in
a fragment of an acoustic event, by pitch or location grouping
cues, should not be contributing to the noise floor estimate.

Statistical model combination

The work presented here employs an estimate of the mean
noise floor spectra. However, if a reliable mean and variance
could be estimated by the tracker, the noise floor model could
potentially be combined with the target speech models within
the fragment decoding framework in a more principled way.

6. Conclusions
This paper has presented a noise robust ASR system that com-
bines aspects of the noise modelling and source separation ap-
proaches to the problem. The combined approach has been mo-
tivated by the observation that everyday listening noise back-
grounds can be roughly characterised in terms of a slowly vary-
ing noise floor in which there are embedded a mixture of ener-
getic but unpredictable acoustic events. Our solution proceeds
in two steps. First, an adaptive noise floor model estimates the
degree to which energetic acoustic events are masked by the
noise floor (represented by a soft missing data mask). Second,
a fragment decoding system attempts to interpret the energetic
regions that are not accounted for by the noise floor model. This
component uses models of the target speech to decide whether
fragments should be included in the target speech stream or not.

The combined approach is able to outperform comparable
systems using either the noise model or fragment decoding ap-
proach alone. Although performance improvements are mod-
est, we expect to be able to improve upon this baseline by using
more sophisticated noise floor tracking approaches, exploiting
noise floor variance estimates and introducing closer coupling
of the noise floor estimation and fragment generation processes.
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