
A GENERALIZED STEIN’S ESTIMATION APPROACH FOR SPEECH ENHANCEMENT
BASED ON PERCEPTUAL CRITERIA

Sunder Ram Krishnan and Chandra Sekhar Seelamantula

Indian Institute of Science, Bangalore
Department of Electrical Engineering

Bangalore-560012, India
sunder@ee.iisc.ernet.in, chandra.sekhar@ieee.org

ABSTRACT

We address the problem of speech enhancement using a risk-
estimation approach. In particular, we propose the use the Stein’s
unbiased risk estimator (SURE) for solving the problem. The need
for a suitable finite-sample risk estimator arises because the actual
risks invariably depend on the unknown ground truth. We con-
sider the popular mean-squared error (MSE) criterion first, and then
compare it against the perceptually-motivated Itakura-Saito (IS)
distortion, by deriving unbiased estimators of the corresponding
risks. We use a generalized SURE (GSURE) development, recently
proposed by Eldar for MSE. We consider dependent observation
models from the exponential family with an additive noise model,
and derive an unbiased estimator for the risk corresponding to the IS
distortion, which is non-quadratic. This serves to address the speech
enhancement problem in a more general setting. Experimental re-
sults illustrate that the IS metric is efficient in suppressing musical
noise, which affects the MSE-enhanced speech. However, in terms
of global signal-to-noise ratio (SNR), the minimum MSE solution
gives better results.

Index Terms— Stein’s unbiased risk estimator (SURE), per-
ceptual distortion metrics, generalized SURE (GSURE), speech en-
hancement.

1. INTRODUCTION

Charles M. Stein, while addressing the problem of estimating the
mean of a multivariate normal distribution using an independent and
identically distributed (i.i.d.) assumption [1], derived an unbiased
estimator of the MSE based on a lemma, the proof of which relies
on an identity satisfied by the Gaussian density and integration by
parts. It is a remarkable result in statistics, since he also proved that
the resulting shrinkage-type estimator of the mean would dominate
the classical least-squares (LS) estimator, provided the number of
data samples is greater than equal to three. In the realm of statis-
tics, cost functions such as the MSE are referred to as risks, and
therefore, such an estimator of the risk is referred to as Stein’s unbi-
ased risk estimator (SURE). SURE of the MSE (which is quadratic,
and therefore mathematically tractable) has been used in image and
speech processing for optimally determining the parameters of the
denoising algorithm involved in the application [2–9].

Stein’s original formalism is based on an i.i.d. Gaussian model
[1], which was later extended to other, more general cases. Hud-
son [10] considered certain density models falling within the ex-
ponential family, together with the i.i.d. assumption. Again, de-
velopments for improving upon inadmissible estimators considering

random variables within continuous and discrete exponential fami-
lies, were reported in [11] and [12], respectively. Raphan and Si-
moncelli provided a generalization of SURE for the Gaussian case,
showing the derivation of a SURE-optimal parametric LS estima-
tor [13]. Eldar [7] has extended the SURE principle to any density
model within the exponential family of densities, without assuming
independence. This provides a favorable situation, as we can po-
tentially apply Stein’s principle to a variety of denoising problems.
However, the risk considered is the classical MSE.

Using a point-wise linear denoising function referred to as the
modified James Stein (MJS) estimator, Muraka and Seelamantula
developed an unbiased estimator for the IS risk in the i.i.d. Gaussian
case [8]. The derivation of unbiased estimators for highly non-linear
and non-quadratic perceptual distortion functions is not straightfor-
ward. However, they showed that with a high SNR assumption,
a Taylor series development of the distortion metric suitably trun-
cated, followed by a recursive form of Stein’s lemma, enables one in
deriving an unbiased estimator for the non-quadratic IS distortion.
This proved to be a significant development in the risk-estimation
approach to speech enhancement, as perceptual distortion measures
are more appealing for the speech enhancement problem as com-
pared with the popular squared error distortion. In this paper, after
briefing the reader on SURE theory for the classical MSE, using an
additive noise model, we show a detailed theoretical development
of an unbiased estimator for the IS measure under a general set-
ting. That is, without assuming any particular functional form for
the denoising function, we focus on general, not necessarily i.i.d.
observation models from within the exponential family, and derive
the estimator of the risk. We satisfy ourselves that the derived risk
estimator reduces to that derived in [8], for the i.i.d. Gaussian, MJS
estimator case. Following this, we validate our theoretical findings
with some experiments with correlated Gaussian noise, which con-
firm the superior performance of the IS-based enhancement algo-
rithm with respect to musical noise suppression. In terms of global
SNR, the MSE-based denoising algorithm is observed to provide
better results. Denoising is performed in the discrete cosine trans-
form (DCT) domain as in [8].

1.1. Organization of the paper

In Section 2, we present the problem statement. In Section 3, we
detail the GSURE development for the classical MSE. The detailed
derivation of the unbiased estimator for the IS-risk assuming a gen-
eral observation model is shown in Section 4 in which, we also com-
pare our theoretical results with those in [8]. We draw the concluding
remarks in Section 5.



1.2. Notations

We use bold-face lower case letters to denote vector quantities, bold-
face upper case letters to denote matrices, and vn to denote nth com-
ponent of a vector v.

2. PROBLEM STATEMENT

We assume that the observation vector x has a pdf parameterized by
θ as follows:

p(x ;θ) = a(x) exp
(
θTψ(x)− b(θ)

)
, (1)

where x ∈ RN denotes the noisy speech, and θ ∈ RN is the clean
speech. We assume an additive noise model as follows:

xn = θn + wn ; n = 1, 2, 3, · · · , N, (2)

with w being a random vector, whose pdf belongs to the exponential
family. Our problem is to estimate θ from the noisy observation
vector x, by minimizing a chosen distortion metric. Our approach is
one of risk-minimization, which is outlined below.

2.1. Our approach

The basic idea of our approach is schematically presented in Figure
1. We would like to emphasize that the index n in (2) need not nec-
essarily refer to time. Indeed, our risk-estimation based denoising
algorithm acts in the DCT domain. The fundamental idea is that,
since the actual distortion functions are dependent on the ground
truth, we could minimize unbiased, finite-sample estimators of the
risks corresponding to the distortion measures. Before detailing our
approach, as an example, consider the case when w in (2) is a zero
mean Gaussian random vector with covariance matrix C, which is
positive definite. Writing out the pdf of x in this case, and comparing
with (1), we get:

a(x) =
1√

(2π)Ndet(C)
exp

(
−1

2
xTC−1x

)
, (3)

ψ(x) = C−1x, (4)

b(θ) =
1

2
θTC−1θ. (5)

In (1), from the Neyman-Fischer factorization theorem [14], we note
that t ∆

= ψ(x) is sufficient for estimating θ. Therefore, the denois-
ing function chosen should be a function of t alone, as otherwise we
can always condition it on the sufficient statistic to arrive at a dom-
inating estimator, as suggested by the Rao-Blackwell theorem [14].
We denote the estimate of θn by fn(t). Now, our objective is to op-
timize the estimator form fn by minimizing the risk corresponding
to a distortion d:

Rd = E {d(θn, fn(t))} . (6)

In this work, we consider two forms for d as follows:

dSE(θn, fn(t)) = (θn − fn(t))2, and (7)

dIS(θn, fn(t)) =
fn(t)

θn
− log

(
fn(t)

θn

)
− 1. (8)

(7) is the classical squared-error distortion, and (8) expresses the
perceptually-motivated IS distortion. Since these measures depend
upon the unknown θn, we propose to derive unbiased estimators of
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Fig. 1. Block diagram representation of the GSURE-approach to
speech enhancement.

the risks corresponding to (7) and (8), and minimize the risk esti-
mators instead of the actual risks. We show our theoretical devel-
opments in a general framework, though the experimental results are
shown for the correlated Gaussian case. We note that our results hold
true for any additive noise model, with the noise vector pdf belong-
ing to the class of exponential densities. In particular, for speech en-
hancement, one could specialize our results to a double-exponential
observation model. The development for dSE shown in the following
section, is based on [7].

3. GSURE FOR dSE

In this case, we would like to obtain the optimum form for fn(t) by
minimizing the risk given by:

RSE = E
{
(fn(t)− θn)2

}
= E

{
f2
n(t)− 2fn(t)θn + θ2

n

}
. (9)

Note that the expectation is with respect to the density of t. As
discussed in [14], one can show that the sufficient statistic t also has
a pdf from within the exponential family given as follows:

p(t ;θ) = c(t) exp
(
θT t− b(θ)

)
. (10)

The term in (9) that renders direct optimization infeasible is the sec-
ond term, because of direct dependence on the unknown θn. The
term E

{
θ2
n

}
does not affect the minimization, as we are optimizing

over the form of fn(t). Using SURE, we can eliminate the depen-
dence of true risks on unknown parameters and arrive at unbiased
estimators of these risks, which are functions of the noisy data sam-
ples alone. For this, we make use of certain identities satisfied by the
density model under consideration. In particular, together with some
mild assumptions on the estimator form, the identity that makes pos-
sible the whole development for the case of densities in the exponen-
tial family is the following:

θn exp
(
θT t− b(θ)

)
=

∂

∂tn
exp

(
θT t− b(θ)

)
. (11)

Consider the term E{fn(t)θn}. The following series of equalities
hold:

E{fn(t)θn} =
∫
fn(t)c(t)θn exp

(
θT t− b(θ)

)
dtn

=

∫
fn(t)c(t)

∂

∂tn
exp

(
θT t− b(θ)

)
dtn

= −
∫
∂fn(t)c(t)

∂tn
exp

(
θT t− b(θ)

)
dtn. (12)

In the second equality we have used (11), and integrated by parts to
arrive at the final expression. In the simplification, we assume that
fn(t) is weakly differentiable, and that E{|fn(t)|} is bounded. The



latter assumption guarantees that the first term in the result of inte-
gration by parts vanishes to zero. Along with weak differentiability,
the other requirement on the form of fn(t) is that it must be bounded
by a fast-increasing function for its expectation to be bounded. For
clearly understanding what we require here, consider the i.i.d. Gaus-
sian model assuming Gaussian noise of mean 0 and variance σ2. In

this case, fn(x)
(

note that t =
x

σ2

)
must be bounded by a function

like exp

(
N∑

n=1

x2
n

/
2σ̃2

)
; σ̃ > σ. That is, in any case, the func-

tion should not grow exponentially in such a manner that it overrides
the exponential decay of the density model under consideration. Us-
ing (12), we get the unbiased estimator of the risk in (9) to be:

εSE = f2
n(t) + 2

∂

∂tn
fn(t) + 2fn(t)

∂

∂tn
log c(t) + θ2

n, (13)

which is referred to as the GSURE for MSE [7]. Taking the i.i.d.
Gaussian model considered by Stein [1], and writing down the pdf
of the observation vector x as in (1), it is straightforwardly seen that
t =

x

σ2
, and so we choose fn to be a function of x. Here, the

components of t are independent Gaussian random variables with

mean
θn
σ2

and variance
1

σ2
. In order to fully define the GSURE

objective in (13), the additional information required is the form of
the function c(t). This is seen to be:

c(t) = A exp

(
−σ

2

2

N∑
n=1

t2n

)
, (14)

where A is a constant factor. From (14), we derive the GSURE
objective for the i.i.d. Gaussian model to be:

ε = f2
n(x) + 2σ2 ∂

∂xn
fn(x)− 2xnfn(x) + θ2

n, (15)

which is the classical SURE model used extensively. If we define the
form of the denoising function as fn(x) = anxn, which is a point-
wise linear estimator (the MJS estimator), the optimal ans obtained
by minimizing (15) turn out to be:

an = 1− σ2

x2
n

. (16)

We note that the MJS estimator was used in the DCT domain for
speech enhancement in [8]. We are now in a position to derive an
unbiased estimator for the risk corresponding to the IS measure in
(8).

4. GSURE FOR dIS

The distortion function in (8) is equivalently written as follows:

dIS =
fn(t)

xn

(
1− wn

xn

)−1

− log fn(t) + log θn − 1

=
fn(t)

xn

∞∑
k=0

(
wn

xn

)k

− log fn(t) + log θn − 1

=
fn(t)

xn

∞∑
k=0

(
1− θn

xn

)k

− log fn(t) + log θn − 1, (17)

where in the second equality, we have used the binomial ex-

pansion of
(
1− wn

xn

)−1

assuming
∣∣∣∣wn

xn

∣∣∣∣ < 1. With a high

SNR assumption, a close enough approximation to the series is
got by truncating it to the first five terms in the final expression.
The term in the corresponding risk, which needs simplification

is: E

{
fn(t)

gn(t)

4∑
k=0

(
1− θn

gn(t)

)k
}

, where we have assumed that

ψ(x) is an invertible function, and denoted its inverse function by
g(t). Note that in case of most densities within the exponential fam-
ily, we have ψ(x) ∝ x at least in the independent case. Specifically,
in the correlated Gaussian noise case as in (2), x = g(t) = Ct, so
that each xn is a linear combination of all tns. The simplified form

of this term is given in (18), where ξ`(t) =
fn(t)

g`n(t)
. A recursive form

of Stein’s lemma was used in [8] for proceeding with the derivation.
Presently, we note that a similar situation accrues here, with (11)
being used the required number of times to simplify the last four
terms in (18). For instance, consider the third term in (18) (see next
page). The simplification proceeds as given below:

E{ξ3(t)θ2
n} =

∫
θnξ3(t)c(t)θn exp

(
θT t− b(θ)

)
dtn

=

∫
θnξ3(t)c(t)

∂ exp
(
θT t− b(θ)

)
∂tn

dtn

= −
∫
∂ξ3(t)c(t)

∂tn
θn exp

(
θT t− b(θ)

)
dtn

= −
∫
∂ξ3(t)c(t)

∂tn

∂ exp
(
θT t− b(θ)

)
∂tn

dtn

=

∫
∂2ξ3(t)c(t)

∂t2n
exp

(
θT t− b(θ)

)
dtn. (19)

In arriving at (19), we have assumed that the integrated part∣∣∣∣[c(t)∂ξ3(t)∂tn
+ ξ3(t)

∂c(t)

∂tn

]
exp

(
θT t− b(θ)

)∣∣∣∣ goes to zero as

|tn| goes to zero. In the cases of many densities like correlated
Gaussian, exponential, Rayleigh, etc., along with the independence
assumption, when the form of the estimator is again as was assumed
for the MSE derivation, one can easily verify that this term vanishes
to zero. In fact, as we try to proceed in a similar fashion for the last
two terms in (18), we would demand that the first terms arising out
of the repeated integration by parts, should decay to zero asymptot-
ically, which is also guaranteed in the cases just mentioned above.
That is, for simplifying the fourth term, |P1,θ(t)| in (20) should
vanish to zero, whereas we need |P2,θ(t)| in (21) to go to zero
asymptotically, for simplifying the last term in (18). Now, (19)
can equivalently be written as in (22). Thus, the unbiased estimator
of the corresponding risk in this case is:

εIS = 5ξ1(t) + 10
∂ξ2(t)

∂tn
+ 10

∂2ξ3(t)

∂t2n
+ 5

∂3ξ4(t)

∂t3n

+
∂4ξ5(t)

∂t4n
+A1,I(t)

∂ log c(t)

∂tn
+A2,I(t)

(
∂ log c(t)

∂tn

)2

+A3,I(t)

(
∂ log c(t)

∂tn

)3

+A4,I(t)

(
∂ log c(t)

∂tn

)4

+B1,I(t)
∂2 log c(t)

∂t2n
+B2,I(t)

(
∂2 log c(t)

∂t2n

)2

+C1,I(t)
∂3 log c(t)

∂t3n
+D1,I(t)

∂4 log c(t)

∂t4n
−log fn(t)+log θn−1.

(23)
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Fig. 2. (Color online) Spectrograms for speech signal 1: (a) Clean
speech (b) Noisy speech (SNR=5.50 dB) (c) Enhanced speech using
MSE (global SNR=10.86 dB) (d) Enhanced speech using IS (global
SNR=9.09 dB).

The functions Ai,I, Bi,I, Ci,I, Di,I are expanded in (24)-(31).

A1,I(t) = 10ξ2(t) + 20
∂ξ3(t)

∂tn
+ 15

∂2ξ4(t)

∂t2n

+

(
15ξ4(t) + 12

∂ξ5(t)

∂tn

)
∂2 log c(t)

∂t2n

+ 4
∂3ξ5(t)

∂t3n
+ 4ξ5(t)

∂3 log c(t)

∂t3n
. (24)

A2,I(t) = 10ξ3(t) + 15
∂ξ4(t)

∂tn
+ 6

∂2ξ5(t)

∂t2n
+ 6ξ5(t)

∂2 log c(t)

∂t2n
.

(25)

A3,I(t) = 5ξ4(t) + 4
∂ξ5(t)

∂tn
. (26)

A4,I(t) = ξ5(t). (27)

B1,I(t) = 10ξ3(t) + 15
∂ξ4(t)

∂tn
+ 6

∂2ξ5(t)

∂t2n
. (28)

(a) (b)

(c) (d)

Fig. 3. (Color online) Spectrograms for speech signal 2: (a) Clean
speech (b) Noisy speech (SNR=5.40 dB) (c) Enhanced speech using
MSE (global SNR=11.04 dB) (d) Enhanced speech using IS (global
SNR=9.73 dB).
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Fig. 4. Variation of a∗n,IS with a-posteriori SNR.

B2,I(t) = 3ξ5(t). (29)

C1,I(t) = 5ξ4(t) + 4
∂ξ5(t)

∂tn
. (30)

D1,I(t) = ξ5(t). (31)

E
{
fn(t)

θn

}
≈ E

{
5
fn(t)

gn(t)
− 10

fn(t)

g2
n(t)

θn + 10
fn(t)

g3
n(t)

θ2
n − 5

fn(t)

g4
n(t)

θ3
n +

fn(t)

g5
n(t)

θ4
n

}
= E

{
5ξ1(t)− 10ξ2(t)θn + 10ξ3(t)θ

2
n − 5ξ4(t)θ

3
n + ξ5(t)θ

4
n

}
. (18)

P1,θ(t) =

[
c(t)

∂2ξ3(t)

∂t2n
+ 2

∂ξ3(t)

∂tn

∂c(t)

∂tn
+ φ3(t)

∂2c(t)

∂t2n

]
exp

(
θT t− b(θ)

)
. (20)

P2,θ(t) =

[
c(t)

∂3ξ3(t)

∂t3n
+ 3

∂2ξ3(t)

∂t2n

∂c(t)

∂tn
+ 3

∂ξ3(t)

∂tn

∂2c(t)

∂t2n
+ ξ3(t)

∂3c(t)

∂t3n

]
exp

(
θT t− b(θ)

)
. (21)

E{ξ3(t)θ2
n} = E

{
∂2ξ3(t)

∂t2n
+ 2

∂ξ3(t)

∂tn

∂ log c(t)

∂tn
+ ξ3(t)

[
∂2 log c(t)

∂t2n
+

(
∂ log c(t)

∂tn

)2
]}

. (22)
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Fig. 5. (Color online) Segmental SNRs for speech signal 1: (a) Us-
ing MSE (b) Using IS.
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Fig. 6. (Color online) Segmental SNRs for speech signal 2: (a) Us-
ing MSE (b) Using IS.

For the special case of the i.i.d. Gaussian model, using t =
x

σ2
,

(14), and fn(x) = anxn, we get the unbiased estimator of the IS
risk to be:

εIS = an

(
1 + 60

σ6

x6
n

+ 840
σ8

x8
n

)
− log(anxn)− log θn−1, (32)

which agrees with the result presented in [8].

5. EXPERIMENTAL RESULTS

For the validation of the theoretical results presented, we selected
two utterances from the NOIZEUS database [15]–“The lazy cow lay
in the cool grass,” and “The friendly gang left the drug store.” We
use the model in (2), with the noise vector w assumed to be a Gaus-
sian random vector with zero mean and covariance matrix, C. In
our experiments, we selected a matrix C as follows. For the sake of
convenience, we generated an upper triangular matrix with the ele-
ments in the j th row being 10−7j for j = 1, 2, 3, · · · , N , made it
symmetric, and used it as our C. Note that in this case, the sufficient
statistic t is given by (4) as C−1x, which is Gaussian with mean
C−1θ and covariance matrix C−1. Therefore, c(t) in (10) is equal
to

B exp

(
−1

2
tTCt

)
, (33)

with B being a constant. Again, the maximum likelihood estimate
of θ is θ̂ML = x = Ct. Stein [1] showed that one can dominate
the classical maximum likelihood estimator by applying a suitable
shrinkage, depending upon the noise strength. With this motiva-
tion, suppose we seek estimators of the form f(t) = a . θ̂ML, with
“.” denoting element-wise multiplication, we can ask: “What are
the GSURE-optimal ans?.” For answering this question, we have to

fully specify the objectives in (13) and (23). This is accomplished
with the following expressions, which are easily verified:

∂ log c(t)

∂tn
= −xn (34)

∂2 log c(t)

∂t2n
= −cnn (35)

∂3 log c(t)

∂t3n
=
∂4 log c(t)

∂t4n
= 0, (36)

with cnn in (35) denoting the nth diagonal element of C. With these
expressions, the costs in (13) and (23) get simplified as follows:

εSE = a2
nx

2
n − 2anx

2
n + 2c2nnan + θ2

n, (37)

εIS = an

(
1 + 60

c6nn

x6
n

+ 840
c8nn

x8
n

)
− log(anxn)− log θn − 1.

(38)
Thus, the respective optimum ans are given as:

a∗n,SE = 1− c2nn

x2
n

, and (39)

a∗n,IS =

[
1 + 60

c6nn

x6
n

+ 840
c8nn

x8
n

]−1

. (40)

Defining the a-posteriori SNR ξn as ξn =
x2
n

c2nn

, we see that the

optimal ans can be represented equivalently as follows:

a∗n,SE = 1− 1

ξn
(41)

a∗n,IS =

[
1 + 60

1

ξ3
n

+ 840
1

ξ4
n

]−1

. (42)

Note that in (41), we make the a∗n,SEs zero if they become neg-
ative, since the resulting estimator dominates the one with the co-
efficients being negative. Now that our algorithm is fully specified,
we proceed to the presentation of results. We show the results from
our risk-estimation algorithm on two signals–henceforth referred to
as speech signals 1 and 2, respectively. The spectrograms of the
clean, noisy, MSE-enhanced, and IS-enhanced speech, correspond-
ing to the signals 1 and 2 are given in Figure 2 and Figure 3, re-
spectively. All the spectrograms shown here, are constructed using a
Hamming window of 256 samples with the overlap being 128 sam-
ples. Even though the global SNR is higher for the MSE-enhanced
speech, the resulting signal suffers from musical noise, visible as red
spots in the spectrogram. This undesirable noise is suppressed in
the IS case, as seen from the IS-enhanced spectrograms. The vari-
ation of the IS-optimal spectral weighting coefficients as given in
(42), with the a-posteriori SNR is presented in Figure (4). This vari-
ation is consistent with our intuition that, when the a-posteriori SNR
is high, the weighting applied need only be close to one, and vice
versa for suppression of noise. Also, we present the segmental SNR
plots averaged over multiple noise realizations for the two signals
with both MSE and IS enhancements in Figures (5) and (6), respec-
tively. We understand that the MSE-based enhancement presents
good performance in speech regions, whereas the residual noise in
the time-frequency plane is suppressed to a considerable extent using
the perceptually-motivated IS measure.



6. CONCLUSIONS

In this work, we have addressed the speech enhancement problem
using a risk-estimation approach. In particular, we considered the
well-known Stein’s risk estimator, and derived an unbiased estimator
for the perceptually motivated IS distortion, which is non-quadratic
using an approximate Taylor series analysis. The observation model
was assumed to fall within the exponential family, with there be-
ing no assumptions of noise following a particular pdf or that of
independence. Using an additive noise model, we noted that in the
context of speech, our development is of significance since it serves
to enhance speech corrupted with correlated Gaussian or double-
exponential noise. We used a multiplicative factor an, in the spectral
domain for enhancement, which can be seen as a filtering process.
Even though the estimator was chosen to be pointwise linear, the op-
timum form turned out to be highly non-linear in the observations.
Again, we observed the variation of the optimum gain factor (de-
pendent only upon the a-posteriori SNR) with a-posteriori SNR and
found that in the high SNR regions, the factor is close to unity, and
vice versa in the low SNR regions. This form for the optimum es-
timator, derived using a risk-estimation approach, helps us to draw
certain commonalities between the classical Wiener filtering and our
approach. Experimental results showed that the undesirable musi-
cal noise is suppressed considerably using the IS metric, though the
global SNR is better for the MSE-enhanced speech. Due to space
constraints, we have presented some preliminary results in this pa-
per, which confirmed the validity of our theoretical developments.
An extended set of results, considering different perceptual measures
and different noise models will be provided in a journal version of
this paper.
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