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Abstract
We could show in the past that Hierarchical Spectro-

Temporal (HIST) features improve the performance of Auto-
matic Recognition Systems (ARS) of speech in difficult envi-
ronments when they are combined with conventional speech
spectral features. The target here is to improve the noise ro-
bustness of the HIST features by investigating a channel dis-
tribution equalization in our feature hierarchy. Thereby,we
determine the empirical cumulative distribution of the speech
training data set, which is referred to as reference distribu-
tion. Afterwards, a distribution adjustment of the training as
well as test data is performed with respect to the reference
distribution. We carry out the above mentioned distribution
equalization in the preprocessing step as well as after each
feature extraction step of our HIST feature extraction frame-
work. We evaluate the benefits of such an equalization in the
HIST feature extraction process with different noise types.
Index Terms: Spectro-temporal features, distribution equal-
ization.

1. Introduction

In severe acoustical environments, e.g. when the noise ex-
hibits nonstationary characteristics, the performance ofAuto-
matic Speech Recognition (ASR) systems decreases remark-
ably, especially in comparison to humans [1].

Common spectral speech features as the Mel Fre-
quency Cepstral Coefficients (MFCCs) or RelAtive SpectrAl
(RASTA) features [2] show good performance in clean con-
ditions but strongly deteriorate in the presence of noise. In
order to enhance the feature representation and consequently
improve their performance in difficult environments several
normalization methods in the feature space have been pro-
posed. On one hand there is theCepstral Mean Subtraction
(CMS), where the global shift of the cepstrum is reset to zero,
on the other hand theMean Variance Normalization(MVN),
which is an extension of the CMS in which, additionally to
the removal of the mean of each feature vector, their standard
deviation is normalized to unity [3, 4]. These methods im-
prove the performance of MFCCs in difficult environments,
but their performance decreases (not significantly) in clean
condition. Furthermore, a better noise robustness of the fea-
tures is also achieved by performing a Distribution Equaliza-
tion (DEQ), where the nonlinear distortions caused by noise

are compensated. Hereby, the distribution of the features is
adjusted such that it becomes similar to a reference distribu-
tion often chosen as a normal distribution.

Spectro-temporal featuresgave promising results in se-
vere environments. These features are inspired by neuro-
physiological findings and allow to capture the joint spectro-
temporal dynamics of speech. Unlike standard features, they
are able to detect diagonal structures in the spectro-temporal
representation as formant transitions. Most of them use Ga-
bor filters [5, 6, 7, 8, 9]. Alternatively, we developed features
inspired by a hierarchical system for visual object recognition
[10]. The feature extraction is organized in two hierarchical
layers and we refer to them as Hierarchical Spectro-Temporal
(HIST) features [11, 12]. An overview of the feature extrac-
tion scheme is depicted in Fig. 1. These spectro-temporal
features are more robust in difficult environments compared
to conventional speech features and especially in combination
with them.
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Figure 1: Overview of the feature extraction process [12].

Since the normalization procedures mentioned above con-
tribute to improve the performance of spectral features, we
aim at applying these methods in our spectro-temporal feature
extraction process. MVN has already been shown to perform
well for Gabor based spectro-temporal features [13]. In this
paper we investigate the influence of DEQ in our hierarchical
feature extraction framework in the different processing steps.

This contribution is organized as follows. Section 2 re-
views brievly the main steps of the HIST feature extraction.
Section 3 is devoted to the description of the feature normal-
ization methods. The simulation results, a conclusion and dis-
cussion constitute the last sections, respectively.

2. HIST feature extraction

The HIST feature extraction process consists of several steps
[11, 12]:

• In the first step the input speech signals are transformed
into the spectro-temporal domain using aGammatone



filterbank [14], which models the peripheral process-
ing done by the cochlea in the auditory system. The
filterbank has 128 channels for a frequency range from
80 Hz to 8 kHz. From this we obtain spectrograms
by rectifying and low-pass filtering of the filterbank
response. The sampling rate is then reduced to 400
Hz. Afterwards, the spectral components of the exci-
tation and radiation are suppressed by amplifying the
frequency magnitude by +6 dB/oct. This is termed
preemphasis. After preemphasis a spectral filtering is
carried out by smoothing the spectrogram in the fre-
quency direction with channel-dependent Difference-
of-Gaussian (DoG) operators. This contributes to
the suppression of the harmonics in the spectrogram.
Hence, the formant structure is enhanced. Finally, we
approximated the loudness perception using the 15th-
root non-linear function [15].

• Afterwards, the local features are determined as the ab-
solute of the 2D convolution of the input spectrogram
with a set of receptive fields learned with Independent
Component Analysis (ICA) [16]. It follows a compe-
tition of coequal features using the Winner Take Most
(WTM) algorithm for removing less active neurons and
improving the feature selectivity. This builds the first
layer of our hierarchy.

• In the second layer complex features are obtained by
combining local features over a large frequency range.
The features are learned using Non-Negative Sparse
Coding[17].

• Finally, the features from the second layer are decorre-
lated using the Principal Component Analysis (PCA).

3. Feature normalization procedures

Several techniques are commonly used for the enhancement
of the feature representation and have contributed to increase
the robustness of speech recognition in difficult environments
[4]. In this paper we considered the MVN and the DEQ tech-
niques [3].

3.1. Mean and Variance Normalization

In the MVN technique, the speech signalx0 is normalized
according to the equation (1) such that its meanµ0 and its
varianceσ2

0 are changed to0 and1, respectively.

x1 = F (x0) =
x0 − µ0

σ0
, (1)

wherex1 is the normalized speech signal [3, 4].

3.2. Distribution Equalization

Let x0 be a variable following a probability density function
(pdf) p0(x0). The goal of this technique is to define a trans-
formationx1 = F (x0) that converts the pdfp0(x0) into the

reference pdfp1(x1) = pref(x1) according to the expression
[3]:

p1(x1) = p0(G(x1))
∂G(x1)

∂x1
, (2)

whereG(x1) is the inverse transformation ofF (x0). The
relationship between the cumulative probabilities associated
with these probability distributions is given by

C0(x0) =

∫ x0

−∞

p0(x
′

0)dx
′

0

=

∫ F (x0)

−∞

p0(G(x′

1))
∂G(x′

1)

∂x′

1

dx′

1

=

∫ F (x0)

−∞

p1(x
′

1)dx
′

1

= C1(F (x0)) (3)

and therefore, the desired transformationx1 = F (x0) is ob-
tained from (3) as

x1 = F (x0) = C−1
1 [C0(x0)] = C−1

ref [C0(x0)], (4)

whereC0(x0) is the cumulative distribution of the speech sig-
nal andC−1

ref is the inverse cumulative probabilty function of
the reference distribution. The cumulative distribution func-
tion (CDF) is determined as the cumulative sum of the feature
sample frequency obtained from the histogram normalized by
the maximal feature sample frequency. Since the cumulative
distribution is a monotonically increasing function, we per-
formed the inverse CDF by finding for each CDF value of the
current feature the corresponding feature sample value from
the reference distribution. We considered500 intervals be-
tweenµi − 4σi andµi + 4σi for determining the cumulative
distribution, whereµi andσi represent the mean and stan-
dard deviation of thei-th channel or feature vector compo-
nent. Instead of considering the normal distributionN (0, 1)
as reference distribution, we estimated the reference distribu-
tion based on a reduced training data set in clean conditions.

The distribution equalization is characterized by the fact
that nonlinear distortions are compensated, although its effi-
ciency strongly depends on the quality of the estimated cumu-
lative distribution. Additionally, the distribution equalization
is supposed to correct monotonic transformations, which can
lead to a loss of information since the noise renders the cur-
rent transformation nonmonotonic.

4. Experimental results

For the evaluation we use TIDigits [18], a database for
speaker independent continuous digit recognition. We cor-
rupted the data with different types of noise (white, factory,
babble and car) from the Noisex database [19] at Signal-to-
Noise Ratio (SNR) levels from−5dB . . . inf (clean signal).
The recognition is performed with Hidden Markov Models
(HMMs) trained on clean signals with HTK [20] using, as
defined in the Aurora-2 experimental framework [21], whole



white factory babble car
RASTA-PLPbaseline 43.1 41.2 35.1 19.7
HISTbaseline 33.4 32.0 81.9 20.4
R+Hbaseline 24.4 27.1 71.9 15.4
RASTA-PLPMV N 26.4 26.8 30.9 11.6
HISTMV N 34.3 40.4 64.1 20.8
R+HMV N 23.2 30.1 54.0 11.2

Table 1: Average word error rates in % for the different fea-
ture types when the specified noise types at SNR values rang-
ing from −5 dB . . . inf were added and the MVN was ap-
plied.

word HMMs containing 16 states without skip transitions and
a mixture of 3 Gaussians with a diagonal covariance matrix
per state. The features were also learned with clean signals
and the speakers in the training set differ from those in the test
set. The normalization or equalization procedures are applied
during both training and recognition. We use a combination
of HIST and RASTA-PLP features as we obtained previously
good recognition scores with such a combination, and we con-
sider RASTA-PLP features as baseline since they exhibit su-
perior performance compared to MFCCfeatures [12]. In the
tables and figures below, the abbreviation R+H is referred to
as RASTA-PLP+ HIST.

For determining the mean, standard deviation as well as
the cumulative distribution in each noise situation, we used a
reduced data set of 120 utterances consisting of all types of
speakers (woman, man, boy and girl). First, we applied the
MVN in the feature space considering the RASTA-PLP fea-
tures with delta and delta coefficients, the HIST features with
delta and delta coefficients after PCA and the combination of
them. Tables 1, 2 show the average recogniton performance
and the average relative performance improvement for each
type of noise, respectively. Hereby, the average relative im-
provement is calculated as the average of the relative improve-
ments for each SNR level from−5 dB . . . inf. Features with-
out normalization or equalization are referred to asbaseline.
The results demonstrate that the performance of RASTA-PLP

with MVN compared to RASTA-PLPbaseline is improved for
each noise type. We notice a performance improvement of
about 15% for babble noise and of about 55% or more for the
other ones. We also observe that the RASTA-PLPMV N perfor-
mance is superior to HIST features with MVN. However, by
combining both HIST and RASTA-PLP features we observe
a performance increase for white, factory and car noise by
about 16% on average. Therefore, we assess that the comple-
mentarity of both feature information contributes to achieve
better recognition scores. Nevertheless, RASTA-PLP perfor-
mance still remains the best for babble noise.

Next, we applied the distribution equalization on RASTA-
PLP features and also in our HIST feature extraction process,
e.g. after the preprocessing (preproc.), after extractionof lo-
cal (loc.) and complex (comp.) features, and after the PCA
(PCA). Tables 3, 4 show the average recogniton performance

white factory babble car
RASTA-PLPbaseline -56.0 -73.5 -14.6 -52.0
HISTMV N -51.0 -95.9 -318.0 -105.3
R+HMV N 24.5 6.5 -171.2 17.6

Table 2: Average relative improvement in % w.r.t RASTA-
PLPMV N for the different feature types when the specified
noise types at SNR values ranging from−5 dB . . . inf were
added and the MVN was applied.

white factory babble car
RASTA-PLPDEQ 23.0 25.8 28.5 9.4
HISTpreproc. 26.9 27.4 47.5 9.2
HISTloc. 47.9 51.2 70.0 30.2
HISTcomp. 73.7 70.2 83.3 64.2
HISTPCA 31.3 36.6 57.6 18.6
R+Hpreproc 20.0 23.0 39.6 5.8
R+Hloc. 31.9 36.9 54.0 20.2
R+Hcomp. 60.5 58.6 74.3 49.2
R+HPCA 21.1 27.4 44.9 9.5

Table 3: Average word error rates in % for the different fea-
ture types when the specified noise types at SNR values rang-
ing from−5 dB . . . inf were added and the DEQ was applied.

and the relative performance improvement for each type of
noise, respectively. The obtained results show that apply-
ing the DEQ a performance improvement for all (or almost
all) noise types is achieved as well for RASTA-PLP features
as for HIST features after the preprocessing and the PCA. In
contrast, we observe a performance deterioration of the HIST

features when the equalization is carried out in the interme-
diate layers e.g. after the local and complex features. Fur-
thermore, we notice that the RASTA-PLPDEQ features out-
perform the HIST features with DEQ in general. However,
by combining the HIST and RASTA-PLP features we notice
a considerable improvement of about 25% on average com-
pared to RASTA-PLPDEQ for all noise types, except for bab-
ble noise. The best performance is achieved by combining
the RASTA-PLPDEQ with the HISTpreproc. features. Further,
we compared this best performance with the corresponding
baseline (R+Hbaseline) in Table 4. This comparison is also
illustrated in Fig. 2. A relative average improvement of about
23% is obtained for white and factory noise, and an improve-
ment of about 40% for car noise. However, the performance
of RASTA-PLPDEQ alone is still superior to the combina-
tion of features for babble noise. In contrast, when apply-
ing the equalization after the local or combinations features,
the performance of the combination increases compared to
HIST only, but still remains inferior to the performance of
the RASTA-PLP features. Therefore, a distribution equaliza-
tion in the intermediate layers of the HIST feature extraction
scheme seems not to be beneficial.

We also performed experiments, where we estimated the
mean, variance and cumulative distribution for each utterance
individually and applied them on the same utterance. Tables
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(a) White noise

 −5   0   5  10  15  20 inf
0

20

40

60

80

100

SNR [dB]

W
or

d 
E

rr
or

 R
at

es
 [%

]

 

 

RASTA
baseline

RASTA
DEQ

R+H
baseline

R+H
DEQ: preproc.

(b) Factory noise
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(c) Babble noise
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(d) Car noise
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(e) White noise
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(f) Factory noise
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(g) Babble noise
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(h) Car Noise

Figure 2: Word error rates (a, b, c, d) and relative improvement w.r.t RASTA-PLP with DEQ (e, f, g, h) of the features when the
cumulative distribution was estimated only from reduced data set.

white factory babble car
RASTA-PLPbaseline -79.9 -81.0 -26.9 -71.9
HISTpreproc. -41.6 -52.5 -146.5 -51.7
HISTloc. -126.5 -169.0 -369.6 -232.9
HISTcomp. -463.7 -559.7 -783.3 -881.8
HISTPCA -57.7 -83.4 -244.1 -110.6
R+Hpreproc. 23.9 22.1 -49.0 38.3
R+Hloc. -13.9 -43.6 -221.8 -69.2
R+Hcomp. -284.5 -360.4 -568.7 -554.9
R+HPCA 20.6 10.1 -100.2 15.9

Table 4: Average relative improvement in % w.r.t RASTA-PLP

with DEQ for the different feature types when the specified
noise types at SNR values ranging from−5 dB . . . inf were
added and the DEQ was applied.

5, 6 show the corresponding average recogniton performance
and the relative performance improvement for each type of
noise, respectively. By comparing the results in Tables 5,
6 with those in Tables 3, 4 respectively, we remark that the
feature performance behaviors are similar, when the statistics
were estimated on each utterance as well as on the reduced
data set. Hereby, the best performance is also achieved by
combining the RASTA-PLPDEQ with the HISTpreproc. fea-
tures. Fig. 3 depicts the comparison between this best per-
formance and the corresponding baseline. We can see that the
performance of R+Hbaseline for Signal-to-Noise Ratio (SNR)
greater than10 dB is superior and vice-versa for white, fac-
tory and car noises. In the case of babble noise R+Hpreproc.

outperforms the baseline and is roughly equal to RASTA-
PLPDEQ.

white factory babble car
RASTA-PLPDEQ 26.3 26.8 29.4 12.5
HISTpreproc. 29.0 29.7 48.0 12.8
HISTloc. 43.6 53.2 68.5 26.2
HISTcomp. 67.6 68.9 82.9 60.2
HISTPCA 35.0 38.9 59.4 20.3
R+Hpreproc 22.9 23.6 31.3 7.5
R+Hloc. 26.7 34.3 48.6 14.5
R+Hcomp. 60.6 61.2 79.7 44.9
R+HPCA 22.6 28.2 43.1 11.4

Table 5: Average word error rates in % for the different fea-
ture types when the specified noise types at SNR values rang-
ing from−5 dB . . . inf were added and the DEQ was applied.
The cumulative distributions were estimated using each utter-
ance and applied on the corresponding utterance.

5. Conclusion

In this contribution we investigated a MVN as well as dis-
tribution equalization on HIST and RASTA-PLP features. The
MVN has been performed only on the final features, while the
DEQ was performed after each HIST feature extraction step.
Two cases for estimating the statistics have been used: on one
hand on a reduced data set containing 120 utterances, on the
other hand on each utterance. The simulation results showed
that, as expected, the performance of RASTA-PLP features
improved a lot from the DEQ when a larger number of ut-
terances (in our case 120) were used to estimate the statistics
but also when only the current utterance was used. On the
other hand the HIST features benefited also from DEQ for the
case when applying it after the preprocessing or at the final
stage (after PCA). Yet for the intermediate steps the perfor-
mance decreased. When combining HIST and RASTA-PLP

features after applying DEQ we saw also a notable gain in
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(a) White noise
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(b) Factory noise
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(c) Babble noise
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(d) Car noise
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(e) White noise
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(f) Factory noise
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(g) Babble noise
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(h) Car Noise

Figure 3: Word error rates (a, b, c, d) and relative improvement w.r.t RASTA-PLP with DEQ (e, f, g, h) of the features when the
cumulative distribution was estimated only from the current utterance.

white factory babble car
RASTA-PLPbaseline -40.6 -48.0 -3.7 -15.5
HISTpreproc. -51.3 -75.4 -140.2 -60.2
HISTloc. -102.4 -190.2 -255.7 -129.9
HISTcomp. -251.7 -362.7 -472.8 -455.3
HISTPCA -47.9 -78.2 -182.1 -66.0
R+Hpreproc. 21.2 19.2 -3.0 38.1
R+Hloc. 3.0 -26.8 -86.9 -2.5
R+Hcomp. -137.7 -206.7 -338.9 -255.7
R+HPCA 24.8 8.4 -58.4 22.4

Table 6: Average relative improvement in % w.r.t RASTA-PLP

with DEQ for the different feature types when the specified
noise types at SNR values ranging from−5 dB . . . inf were
added and the DEQ was applied. The cumulative distributions
were estimated only from the current utterance.

performance. This is in particular the case when using the
HIST features where DEQ was applied after the preprocess-
ing or at the final stage. In both cases, when using many utter-
ances (120) to estimate the statistics or only the current utter-
ance, the combination of RASTA-PLPDEQ and HISTpreproc.
outperforms RASTA-PLPDEQ. Yet only when estimating the
statistics from many utterances the performance of the com-
bination of RASTA-PLPDEQ and HISTpreproc. also clearly
outperforms the combination of both features without any
equalization. When using only the current utterance to esti-
mate the statistics this is only the case for low SNR levels (<

10dB). From this we conclude, that one utterance provides
not enough information to reliably estimate the statistics. Fur-
ther research is necessary to understand why the equalization
at intermediate processing steps has such a strong negative
effect on HIST features.
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[13] M. R. Schädler and B. Kollmeier, “Normalized spectro-
temporal gabor filter bank features,” inProc. Inter-
speech, 2012.

[14] M. Slaney, “An efficient implementation of the
patterson-holdsworth auditory filterbank,” inTech. Rep.
35, Apple Computer, Inc.,, 1993.

[15] C. Kim and R. Stern, “Feature extraction for robust
speech recognition based on maximizing the sharpness
of the power distribution and on power flooring,” inIn:
Proc. ICASSP. IEEE, Dallas, TX., 2010, pp. 4574–4577.

[16] P. Comon, “Independent component analysis: A new
concept?”Signal Process., vol. 36, pp. 287–314, 1994.

[17] P. O. Hoyer, “Non-negative matrix factorization with
sparness constraints,”Journal of machine Learning Re-
search, vol. 5, pp. 1457–1469, 2004.

[18] R. G. Leonard, “A database for speaker independent
digit recognition,”In Proc. ICASSP, vol. 9, 1984.

[19] A. Varga and H. J. M. Steeneken, “Assessment for auto-
matic speech recognition: Ii. noisex-92: A database and
an experiment to study the effect of additive noise on
speech recognition systems,,”Speech Communication,
vol. 12, no. 3, pp. 247–252, 1993.

[20] S. Young and al., “The htk book,”Cambridge, 2006.

[21] H.-G. Hirsch and D. Pearce, “The aurora experimen-
tal framework for the performance evaluation of speech
recognition systems under noisy conditions,” inISCA
ITRW ASR2000, Paris(France), September 2000.


