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Abstract
Detection and localization of multiple speakers in a noisy and
reverberant environment is a fundamental and difficult task. In
the literature, steered response power (SRP) based techniques
are typically used to accomplish this task which can be com-
putationally intensive. Nonetheless, the localization of multiple
speakers remains a challenging in practice. In this paper, we
present a novel approach based on a probabilistic interpretation
of the SRP. The proposed method replaces the discrete search
techniques by proposing an approximate analytical form of the
SRP, which can adequately detect and localize multiple speak-
ers. In addition to reliable detection and localization, the poten-
tial advantage of this approach is that it provides a probability
density function (pdf) of the individual speaker positions rather
than point estimates. Experiments on the AV16.3 corpus show
the efficacy of the proposed approach.
Index Terms: Steered response power, Multiple speaker local-
ization, Gaussian mixture.

1. Introduction
Microphone arrays have become an essential tool for a large
number of signal processing problems. Their area of applica-
tion includes speech separation/enhancement, acoustic source
localization and tracking, but also more advanced approaches
such as camera steering for teleconference systems and audio-
visual tracking. Among these applications, the detection and lo-
calization of multiple concurrent speakers from a short segment
of speech remains a difficult and open task; and that although
an abundance of localization methods has been proposed in the
literature: multi-channel cross correlation (MCCC) [1, 2], adap-
tive eigenvalue decomposition (ED) [3], time difference of ar-
rival (TDOA) based techniques [4, 5, 6], just to name a few. In
this work, we concentrate on the most widely used approach,
namely, the steered response power [7]. Despite being reliable
and robust, this technique has a few drawbacks: 1) a higher lo-
calization precision needs a finer search grid over the 3-D or
2-D space, which can greatly increase the computation cost, 2)
in the case of multiple active speakers, detecting the number of
speakers and estimating their locations is generally a difficult
task, and finally, 3) the localization becomes difficult when a
dominant source suppresses the rest of the speakers.
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While the first problem can be addressed by reducing the
search space through inverse mapping of relative delays [8] or
through the method of region contraction [9], the second issue
remains difficult in practice. In [10], a sector based approach
was introduced. Although this method has a low computation
cost, it can only detect active regions, i.e. “sectors”, which are
more likely to contain the speakers. More accurate estimates
require an additional search step inside each active sector. The
authors of [11] proposed to combine agglomerative clustering
(AC) with Gaussian mixture models (GMMs) and region zero-
ing (RZ). A similar approach has been used in [12], where the
GMM is obtained with the Expectation-Maximization (EM) al-
gorithm. The main difficulty of these approaches consists in de-
termining the number of clusters or mixture components, which
represent the active speakers.

In this paper, we propose an alternative solution based on a
probabilistic interpretation of the SRP. It mainly deals with the
first and second drawbacks that were mentioned earlier. More
precisely, an approximate pdf of the source locations is ob-
tained by 1) interpreting the generalized cross correlation func-
tion (GCC) [13] as a pdf of the TDOAs, 2) approximating it
by a Gaussian mixture (GM) and, then, 3) using the fact that
the SRP can be expressed as a sum of the GCC functions [7].
This gives a probabilistic version of the SRP, which can then
be used to detect and localize multiple speakers. The advantage
of this approach is that it avoids the discrete search step. The
number of speakers can reliably be detected with a static thresh-
old. The speaker locations are obtained as pdfs rather than as
point estimates. The performance of the proposed approach is
demonstrated on the AV16.3 corpus [14].

The paper is organized as follows. Section 2 reviews the
classical SRP based acoustic source localization problem. Sec-
tion 3 introduces the proposed approach. Section 4 presents the
experimental results. Finally, in Section 5 we conclude.

2. The Conventional Steered Response
Power Approach

The arrival of sound waves at a microphone array introduces
time differences between the individual sensor/microphone
pairs. The time difference depends on the positions of the mi-
crophones mi, i = 1, . . . ,M , as well as the source location
p, which is typically specified in spherical coordinates, i.e. the
radius r, azimuth θ and elevation φ. More precisely, the TDOA
introduced at the sensor pair q = {mi,mk} is given by

τq (l) =
‖p−mi‖ − ‖p−mk‖

c
(1)

where ‖·‖ is the Euclidean norm and where c denotes the speed
of sound.



The steered response power (SRP) approach now uses
these TDOAs in order to construct a spatial filter (delay-and-
sum beamformer) which scans all possible source locations.
The speaker position is subsequently extracted as that position
where the signal energy is maximized. These steps can be im-
plemented efficiently [7] by using the generalized cross corre-
lation (GCC).

2.1. Generalized Cross Correlation

Let si(t) denote signal received at microphonemi and let sk(t)
denote the signal received at microphone mk. Then, the gener-
alized cross correlationRq of the two signals is given by

Rq(τ) =
1

2π

∫ 2π

0

ψ(ω)Si(ω)S
∗
k(ω)e

jωτdω (2)

where, Si(ω) and Sk(ω) denote the short-time Fourier trans-
forms of si(t) and sk(t), respectively, and ψ(ω) denotes a
pre-filter. A common choice of ψ(ω) is the Phase Transform
(PHAT) weighting [13]: ψPHAT (ω) = 1

|Si(ω)S
∗
k
(ω)| .

2.2. Single Speaker Localization based on SRP

After the definition of the GCC, the power returned from a par-
ticular location p (r, θ, φ) can now be estimated as [7]:

SRP (p) = 4π

Q∑
q=1

Rq(τq(p)) +K (3)

where,Q is the number of microphone pairs,Rq , q = 1, . . . , Q
are the corresponding GCCs and τq denotes the TDOA intro-
duced at the q-th microphone pair. K is a constant offset,
which is introduced by the auto-correlation of each microphone
(see [7] for more details) and which is ignored in the rest of the
paper. Once the SRP has been calculated for each position p,
the source location estimate p̂(r̂, θ̂, φ̂) is determined according
to [7]:

p̂ = argmax
p

SRP (p). (4)

Scanning all possible source locations is computationally
expensive. Hence, a variety of approaches have been proposed
to reduce the computational burden, such as splitting the 2-D or
3-D space into sectors [10] or adopting space reduction strate-
gies in which only some regions of interest of the space are
considered (see e.g. [8, 9]). These approaches are, however,
suffering from a poor resolution or from estimation errors due
to the inherent discontinuity of the SRP (the latter may partly be
avoided by interpolating the GCC functions). Another problem
is that conventional SRP based acoustic source localization be-
comes more difficult in the multi-speaker case, which requires
advanced techniques for jointly detecting the number and loca-
tions of the speakers.

As mentioned earlier in Section 1, sector based approaches
(see e.g. [10]) divide the space into discrete sectors and locate
speakers by detecting sectors that have an activity higher than
a given threshold. Although, these approaches are computa-
tionally efficient, they perform only on the sector level. Thus,
another step is required to obtain accurate estimates within each
sector. Another category of approaches based on GMMs com-
bined with clustering have been proposed as a solution to this
problem. In [11], a GMM and a RZ approach have been com-
bined, respectively, with agglomerative clustering. As a first
step, this approach estimates the potential locations using the
region contraction technique proposed in [9], and then clus-
ters these locations to obtain the number and location of the

speakers. A similar approach has been proposed in [12], where
a GMM is obtained with the Expectation-Maximization algo-
rithm (EM) after a clustering step. The components of the GM
are then merged iteratively, until a minimal inter-component
distance is reached. The difficulty of these approaches con-
sists in 1) determining the number of clusters or GM compo-
nents, which actually represents the number of active speakers,
as well as 2) the poor precision which may result from the dis-
crete search approaches and clustering techniques.

3. Proposed Approach
In this section, we present a novel approach which is based on
a probabilistic interpretation of the SRP. It first approximates
the pdf of the source locations (i.e. the SRP function) and then
jointly detects the number of speakers as well as their locations.
This is achieved by

1. interpreting each GCC as a pdf of the TDOA and then
approximating this pdf using a GMM (Section 3.1)

2. obtaining a probabilistic approximation of the SRP by
using the TDOA GMMs (from step 1) and the determin-
istic mapping between TDOAs and source locations as
given by (1) (Section 3.2)

3. extracting the speaker locations from high power regions
of the SRP pdf by using a numerical optimization algo-
rithm (Section 3.3)

In doing so, this approach incorporates the information intro-
duced by each GCC function. Thus, each speaker is character-
ized by a pdf rather than a point-based estimate. Moreover, this
method does not require any discrete search method to estimate
the optimal location, and thereby, can be expected to not suffer
from the poor accuracy of the estimates. The probabilistic as-
pect of this approach allows us to efficiently estimate the num-
ber of speakers by defining a threshold which characterizes the
uncertainty introduced by the noise. Contrary to previous meth-
ods which define environment dependent thresholds [10, 11],
this probabilistic threshold is less dependent on the environ-
ment.

3.1. TDOA Gaussian Mixture Model

Interpreting the normalized GCC as a pdf of the TDOA allows
for a probabilistic approach to the source localization prob-
lem. More precisely, we propose to approximate the pdf of the
TDOA (for each microphone pair) by a GMM. This approxima-
tion is based on the assumption (A-1) that each peak in the GCC
function (and thereby, each Gaussian component in the approx-
imation) corresponds, at the very most, to one source. We also
assume (A-2) that the error introduced in the TDOA detection is
a Gaussian process. While the latter assumption has been found
to achieve good results in practice [6], the former does not al-
ways hold. That is so as the set of locations which have the
same TDOA can be approximated as a cone [4] (under the far
field assumption). As a result, all the sources lying on this cone
correspond to the same GGC peak (and thereby, to the same
Gaussian component in the approximation). Using more than
one microphone pair, however, reduces the number of possible
locations to the intersection of the cones, which allows us to
differentiate the sources. Hence, we can conclude that for any
pair of locations there might (in the worst case) be a few micro-
phone pairs, for which the Gaussian components are the same.
But for the other pairs, (A-1) is still valid.

The most popular approach to estimate the maximum like-
lihood parameters of a GMM from a given data is the EM algo-



rithm. Using this approach to approximate a TDOA GMM for
each microphone pair and each time t, however, would be com-
putationally expensive. Thus, we use a computationally less ex-
pensive method which assigns a Gaussian distribution to each
peak (assumption (A-1)).

Let Kq
t be the number of GCC peaks of the q-th mi-

crophone pair at time t. Furthermore, let {τ1q , . . . , τ
Cq
q } =

[−τmaxq , τmaxq ] be the set of possible TDOAs, with cardinal-
ityCq , and let {w1

q , . . . , w
Cq
q } = {Rq(τ1q ), . . . ,Rq(τ

Cq
q )} de-

note their corresponding GCC values. Negative GCC values are
set to 0 (if there are any). For ease of notation, the time index t
is dropped in the rest of paper. Subsequently, the TDOA GMM
is constructed as follows:

1. Determine the Kq peaks of the GCC.
2. Determine the Kq blocks {Bq1 , ..., B

q
K} corresponding

to the different peaks. By block we mean the peak inter-
val, which starts at its left foot and ends at the right foot
(e.g., see Figure 1).

3. Calculate the Gaussian pdf associated to each block.
4. Calculate and normalize the GMM weights.

The Gaussian pdf N (τq;µ
q
k, (σ

q
k)

2) corresponding to the kth

block Bqk and its mixture weight ŵqk are given by :

µqk =

∑
{l|τlq∈B

q
k
} w

l
q · τ lq∑

{l|τlq∈B
q
k
} w

l
q

(5)

(σqk)
2 =

∑
{l|τlq∈B

q
k
} w

l
q · (τ lq − µqk)

2∑
{l|τlq∈B

q
k
} w

l
q

(6)

ŵqk =

∑
{l|τlq∈B

q
k
} w

l
q∑Cq

l=1 w
l
q

(7)

The means and the weights of the GMM are based on the as-
sumption (A-1) discussed in Section 3.1. Therefore, the cross
energy introduced by each block (in the GCC function) is
counted for the same Gaussian, assuming that it has been gen-
erated by the same speaker. This assumption will help us to
extract the different sources in a future step, by assigning each
Gaussian component in the GMM, at the very most, to a single
speaker.
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Figure 1: Illustration of the TDOA GMM (Kq = 8).

3.2. Probabilistic Steered Response Power

After having approximated the GCC functions by GMMs, a
probabilistic approximation of the SRP can be obtained by re-
placing the GCCs in (3) by their probabilistic counterparts. This
yields:

SRPprob(p) =
1

Z

Q∑
q=1

Kq∑
k=1

ŵqk · N
q
k (τq(p), µ

q
k, (σ

q
k)

2) (8)

where Z is a normalization term.

3.3. Multiple Speaker Localization Algorithm

Given SRPprob, multiple speaker localization is relatively easy.
The general idea here is to find in each GCC approximation the
Gaussian component which has generated the speaker and then
sum these individual (normalized) components to obtain a pdf
of the speaker location. The main issue is to find the compo-
nents representing the same speaker (in each GMM approxima-
tion). But this can be sorted out by employing the assumption
(assumption (A-1) in Section 3.1) that each component in the
GCC approximation maps, at the very most, to a unique single
speaker. In addition to that, the spatial region in the neighbor-
hood of a given speaker is characterized by high SRP values.
Thus, extracting the speakers can be solved by simply finding
locations from the high power regions.

This can be done by calculating a coarse grid (e.g.,
10◦ to 20◦) and then taking the location with maximum en-
ergy. Let p = ps0 be the initial estimate of s-th speaker loca-
tion. We then extract for each microphone pair q, q = 1, . . . , Q,
the Gaussian N

(
τq;µ

q
ks,q

, (σqks,q )
2
)

which has generated the
speaker. That is done according to:

ks,q = argmax
k

N q
k

(
τq(p

s
0), µ

q
k, (σ

q
k)

2
)

(9)

The pdf SRP sprob(p) of the speaker s is then given as:

SRP sprob(p) =
1

Zs

Q∑
q=1

ŵqks,qN
(
τq(p), µ

q
ks,q

, (σqks,q )
2
)
(10)

where Zs is a normalization term to obtain a pdf. This pdf can
be interpreted as the restriction of the SRPprob on the spatial
region in the neighborhood of speaker s.

Now, having extracted the pdf of the source s, we can pro-
ceed to estimate the optimal location. This is non-trivial as the
relationship between TDOA and location, i.e. (1), is not linear.
Hence, a numerical optimization algorithm is required. We here
use the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)
which is a popular choice for a quasi-Newton algorithm [15].
In principle, however, any other numerical optimization algo-
rithm could be used.

It can be observed that the approximation in (10) does not
require a grid search to perform the localization. Furthermore,
it can be easily extended to the multiple speaker case. The
pseudo-code in Algorithm 1 presents an iterative algorithm to
detect and localize multiple speakers. Note that the number of
speakers may be overestimated in the case where the maximum
number of concurrent speakers Nmax is not known. This may
increase the computation complexity, but it does not affect the
localization performance. In order to ensure that we do not miss
any speaker, the BREAK instruction in Step 10 of Algorithm 1
can be removed.



(a) Conventional SRP (b) Probabilistic SRP (c) Extraction of first speaker (S1)

(d) Probabilistic SRP after extraction of S1 (e) Extraction of second speaker (S2) (f) Probabilistic SRP after extraction of S2

Figure 2: A frontal view illustrating the probabilistic SRP and the multiple speaker localization algorithm. The horizontal coordinates
are the azimuth [-180◦,180◦] and the elevation [0◦,90◦].

Algorithm 1 : Multiple Speakers Localization Algorithm

Let Nmax be the maximum number of speakers.
for i = 1 : Nmax do

1. Calculate the SRPprob for a coarse grid.
2. Use the location with the maximum energy as initial-
ization ps0.
for all microphone pairs do

3. Determine the Gaussian component which has gen-
erated ps0 .

end for
4. Define the pdf SRP sprob(p) of the current potential
speaker s.
5. Run an optimization algorithm on SRP sprob(p) to esti-
mate the optimal location psopt.
if SRPprob(psopt) > Pnoise then

6. Add psopt to the set S of speakers.
7. Discard the Gaussian components ks,q of speaker s
from the SRPprob.
8. Normalize the weights.
9. Go to step 1.

else
11. BREAK.

end if
end for
10. Return the set of speakers S.

It is also worth mentioning that the speaker locations from
the previous time frame can be used as initialization for the cur-
rent time frame. Thus, the coarse grid in Step 1 of Algorithm
1 will be required only if the maximum number of speakers
has not been reached and if the current location has a probabil-
ity SRPprob higher than the confidence threshold (i.e. Pnoise).
However, as the energy of each speaker spans over a sector [10],

a coarse grid (10◦ to 20◦) can be used as initialization process.
The probabilistic threshold Pnoise characterizes the regions of
confidence. In fact, assuming that the source location can be ap-
proximated by a Gaussian distribution, the region of confidence
is represented then by an ellipse with equal likelihood. There-
fore, defining a region of confidence is equivalent to defining a
threshold Pnoise over the pdf SRPprob.

Figure 2 shows a localization example of two overlap-
ping speakers using Algorithm 1. The confidence threshold
is Pnoise = 0.3. The proposed algorithm not only localizes
the speakers, but it also provides an approximation of the pdf
of each speaker. This approximation can be efficiently used
to obtain more information about the sources such as, the un-
certainty of the estimates given by the variance as well as the
higher order moments. More precisely, this can be done using
importance/rejection sampling techniques to approximate this
pdf by a single Gaussian distribution (as suggested by Fig. 2c
and Fig. 2e). This is a part of the future work.

4. Experiments and Results
4.1. Database and Experimental Setup

In order to evaluate the proposed approach, we performed a
set of localization experiments on the AV16.3 corpus [14].
In this corpus, real human speakers have been recorded in
a smart meeting room (approximately 30m2 in size) with a
20cm 8-channel circular microphone array. The sampling rate
is 16 kHz and the real mouth position is known with an er-
ror ≤ 5cm [14]. We present experiments for 4 different se-
quences with a varying number of speakers. The first sequence
is seq18-2p-0101where two moving speakers talk simulta-
neously while getting as close as possible to each other and then
slowly move apart. The purpose of this sequence is to test the



Sequence seq18-2p-0101 / two speakers
S1 S2

Anomalies Rate (%) 21.51% 15.01%
Azimuth RMSE 2.01◦ 1.58◦

Sequence seq37-3p-0001 / three speakers
S1 S2 S3

Anomalies Rate (%) 17.20% 17.77% 15.48%
Azimuth RMSE 1.31◦ 2.68◦ 1.70◦

Sequence seq24-2p-0111 / two speakers
S1 S2

Anomalies Rate (%) 34.69% 25.81%
Azimuth RMSE 1.71◦ 1.84◦

Sequence seq40-3p-0111 / three speakers
S1 S2 S3

Anomalies Rate (%) 29.64% 22.52% 23.77%
Azimuth RMSE 1.98◦ 1.94◦ 2.40◦

Table 1: Multiple source/speaker localization results of four different sequences from the AV13.6 corpus [14] with two/three real human
concurrent speakers.

separability and localization of sources that are close. The sec-
ond sequence seq24-2p-0111shows two moving speakers
crossing each other twice. The third experiment is performed on
the three speakers sequence seq40-3p-0111. Two speakers
are seated while the third speaker is initially standing and then
walking back and forth behind the seated speakers. The motiva-
tion is both multi-source localization and separation. In the last
sequence seq37-3p-0001two speakers remain seated and a
third one is standing at five different positions. The number of
speakers talking simultaneously varies between two and three.
The above sequences are 57, 47, 49 and 511 seconds in length,
respectively.

In the experiments, which are reported below, the signal
was divided into frames of 1024 samples (64ms). All the GCCs
were calculated under use of PHAT [13] weighting. The prob-
abilistic threshold Pnoise was 0.3 and the maximum number of
speakers Nmax was 5. As there is no point in localizing an
inactive speaker, we further used a voice activity detector for
suppressing silence frames. Due to the planar array geometry
and the far-field sources, the location space is limited to the set
of azimuth angles in the range [−180◦, 180◦].

The results are reported in terms of the anomaly rate (AR)
[2] - i.e. the percentage of estimates that vary from the true
azimuth by more than 5◦- and by the root-mean-square error
(RMSE) for the non-anomalous estimates. Although, the miss-
detection rate is a good evaluation method for this approach, it is
not possible to calculate it for this corpus. This is due to the lack
of ground truth segmentation of each speaker which can show
whether the speaker is active or not. Instead, the corresponding
localization figures are shown.

4.2. Results and Analysis

Although we proposed the probabilistic SRP approach as a
solution to the multiple speaker localization problem, we, in
a first step, ran it on a number of single speaker sequences.
This allowed us to compare its performance to that of the
conventional SRP (grid resolution = 0.5◦). On sequence
seq02-1p-0000, we obtained an AR of 35.24% and a
RMSE of 1.75◦ without thresholding (Pnoise = 0) compared
to 36.04% as AR and 1.95◦ as RMSE for the conventional
SRP. Similar results were obtained using other single speaker
sequences of the corpus. These results show that, the Gaus-
sianity assumption, which we made in the GCC approximation
and the proposed GMM, do not affect the performance of the
algorithm. Actually, these approximations help improving the
accuracy (RMSE) of the estimates. Furthermore, setting the
probabilistic threshold to Pnoise = 0.3 discards 18% of the es-
timates, with a false rejection rate, i.e. percentage of estimates
wrongly discarded, of 3.83%, leading to an AR of 22.19% with
a RMSE of 1.65◦. This improvement is expected as the prob-

abilistic threshold is used as an uncertainty criterion of the es-
timates. Therefore, the percentage of outliers is reduced. It
is worth mentioning that a similar threshold could be defined
on the conventional SRP. The main problem however resides in
the dependance of the thresholding on the environment and the
source location. As consequence, the threshold value should be
adapted to (and within) each recording, whereas, the proposed
threshold Pnoise is defined over a pdf.

Table 1 shows the multiple speaker localization results for
the above mentioned sequences. Given the single source local-
ization results reported in [2] with different localization tech-
niques (including the conventional SRP) but on the same cor-
pus, we can conclude that anomaly rate is low and that the
RMSE of the azimuth is very good. We can also see that
the results are highly correlated to the speech energy level of
each speaker as well as the distance between the speakers and
the microphone array. The first sequence seq18-2p-0101
shows that the AR and the RMSE of the first speaker are worse
than those of the second speaker. This degradation can be ex-
plained by the difference in the average distance which is about
0.97m for S2 and 1.20m for S1, We can also conclude from
the recordings that S2 is louder than S1. A similar remark
holds for sequence seq24-2p-0111 where the average dis-
tance of S1 and S2 is 1.81m and 1.69m, respectively, and for
sequence seq37-3p-0001 where S1, S2 and S3 are 1.90m,
0.99m and 0.79m far from the center of the array. In the case
of sequence seq40-3p-0111, S1, S2, and S3 are on aver-
age 1.01m, 1.84m, 1.21m away from the array, respectively.
However, S1 has the worst AR. This result can be better un-
derstood by listening to the recording of this sequence, which
shows that S1 is completely suppressed by S2 and S3. In this
work, we have formulated the probabilistic SRP in the time do-
main. The issue of suppressed speakers however, can be bet-
ter addressed in the frequency domain, where the separation of
sources is more efficient [10, 12]. This aspect is currently under
investigation.

5. Conclusions
We proposed a multiple source localization approach based on
a probabilistic approximation of the steered response power. In
this approach, each speaker is characterized by a pdf, instead of
a point estimate. The speakers are efficiently detected and lo-
cated with a probabilistic confidence threshold. The potential of
the approach has been demonstrated through experiments on the
AV16.3 corpus. We are currently formulating the probabilistic
SRP approach in the frequency domain in order to address the
problem of suppressed speakers. Our future work will extend
the probabilistic SRP approach to a more flexible probabilistic
framework.



(a) Sequence “seq37-3p-0001” : Localization of three speakers where the number of active sources changes over time.

(b) Sequence “seq18-2p-0101” : Localization of two concurrent speakers.(c) Sequence “seq40-3p-0111” : Localization of three concurrent speakers.

Figure 3: Illustration of the localization and separation performance of the proposed algorithm.
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