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Abstract
The articulators of human speech might only be able to
move slowly, which results in the gradual and continuous
change of acoustic speech properties. Nevertheless, the
so-called speech continuity is rarely explored to discriminate
different phones. To exploit this, this paper investigates a
multiple-frame MFCC representation (that is expected to retain
sufficient time-continuity information) in combination with a
supervised dimensionality reduction method, whose target is to
find low-dimensional representations that optimally separates
different phone classes. The speech continuity information is
integrated into this framework by using the regularization terms
that penalize discontinuities. Experimental results on TIMIT
phonetic classification show that the use of regularizers can help
to improve the separability of phone classes.
Index Terms: Dimensionality Reduction; Contextual
Representation; TIMIT Phone Classification; Regularization;
Laplacian Smoothing;

1. Introduction
Speech is generated by (semi-)continuous movements of a small
number of articulators, each of which are characterized by a
small number of degrees of freedom. This suggests that speech
signals can be adequately represented by a small number of
parameters that vary in a smooth manner as a function of
time. Plosives form the single most conspicuous exception
to this pattern, because these sounds are characterized by
sudden changes in the articulatory system. Still, capturing the
articulatory dynamics in the speech signals holds the promise of
improving acoustic modeling in automatic speech recognition
(ASR) [1–6]. Specifically, capturing trajectories might
eliminate the trajectory folding phenomenon in conventional
ASR systems [4, 7]. However, despite promising advances
in recovering articulatory gestures from the acoustic speech
signals (e.g., [8,9]), purely articulatory-based automatic speech
recognition is not yet feasible (and it may never be). Therefore,
we need to recur to techniques that allow approximating
articulatory dynamics using acoustic representations.

Probably the simplest way for creating representations that
represent dynamic articulatory gestures is by concatenating a
number of consecutive 10 ms frames. However, such a block
of frames captures the underlying gestures only implicitly. If
we want to represent syllable-sized pieces of a speech signal,
we need approximately 25 frames, for an average syllable
duration of 250 ms. If each frame consists of 13 MFCCs (or
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a similar number of Mel-frequency spectral coefficients) each
block comprises over 300 numbers. This is surely a heavily
redundant representation, so that there is an obvious need for
dimensionality reduction. Ideally, the dimensionality reduction
method should help to highlight the dynamic articulatory
gestures that have produced the speech signal.

The speech signals that can be generated by continuous
movements of articulators that have a only few degrees of
freedom will probably be on some low-dimensional manifold
in the very high-dimensional acoustic space. Manifold learning
[10] has proven to be effective for analyzing trajectory-based
signal representations in video processing [11], dynamic texture
analysis [12], and speech processing [13]. In [14, 15] it has
been shown that manifolds of speech trajectories are effective in
separating the overlapping feature spaces occupied by different
phones represented by blocks of contiguous frames in phone
classification tasks. We believe that this advantage might
generalize to acoustical modeling for ASR.

An attractive approach to manifold learning is offered
by the graph-embedding supervised dimensionality reduction
framework, which is an extension of classical Linear
Discriminant Analysis (LDA [16,17]) (e.g. [18–20]). However,
in all approaches to dimensionality reduction attention must
be paid to the issue of finding a proper balance between the
empirical risk (over-fitting of the high-dimensional data) and
the structural risk (failing to meet the requirement that the
resulting representations properly reflect the actual degrees of
freedom in the physical process that generated the (speech)
data). One way in which that balance can be controlled is by
imposing additional constraints on the matrix that projects the
high-dimensional raw representations into a lower-dimensional
space. For example, if we assume that smooth trajectories
in articulatory space should result in smooth trajectories
of parameters in high-dimensional acoustic space, then one
obvious additional requirement is that the weights assigned to
corresponding elements of neighboring frames vary smoothly,
in order to obtain smooth trajectories in low-dimensional space.
From a computational point of view, the most obvious way for
imposing additional requirements on the projection matrix is by
means of introducing regularization terms, e.g. [13, 21].

In this paper we investigate the application of a series of
regularization methods for increasing the smoothness of the
projection matrices by their derivatives along the time axis,
including the conventional Tikhonov regularizer [14, 21–24],
first-order derivative [25], second-order derivative [23, 26] and
fourth-order derivative which is also widely adopted as the
penalty of smoothness [27].

Phone classification is a multi-class problem, with the
number of classes C equal to the number of phone labels
that are used in the labeling of a training corpus. Multi-class
classification can be approached in three ways: by means



of a classifier that uses C models in parallel and assigns an
unknown observation to the class cc that returns the best match;
by combining the results of C binary classifiers that separate
class cc, c = 1, 2, · · · , C from all C − 1 remaining classes,
or by integrating the results of C(C−1)

2
binary classifiers that

separate all pairs of two classes. In this paper we focus on
separating pairs of highly confusable classes [14, 21]. We opt
for this form of binary classification because the results are
useful for phonetic research and advanced acoustic modeling
in ASR. Different pairs of classes, even within a broad phonetic
class might need different features for their separation. Such a
targeted approach is difficult or impossible to implement in a
multi-class classification strategy.

The rest of this paper is organized as follows: In Section 2
we briefly introduce various regularizers, and explain how
they impose smoothness constraints on the mapping into a
lower-dimensional space by the specific variant of LDA that
we use in this research, i.e., Locally Discriminant Embedding
(LDE) [28]. In Section 3 we explain the design of the
experiments. Section 4 presents the results of the experiments.
Discussion and conclusions are presented in Section 5.

2. Regularization for Speech Trajectories
Our phone classification experiments are based on the
TIMIT corpus [29], which comes with accurate labels and
segmentation. This allows us to represent all phone tokens by
a sequence of N = 23 MFCC frames, centered around the
middle frame of this phone. Each frame comprises M = 13
coefficients. Thus, in a binary classification setting each token
is represented as a matrix Xc.

2.1. Supervised Dimensionality Reduction

Supervised dimensionality reduction algorithms first vectorize
the matrix representation to xc

i ∈ RD , D = 13 × 23, and
then find the projection matrix W ∈ RD×d with which a
d-dimensional representations zi ∈ Rd can be obtained by
zi = WTxi that maximizes the separation between the two
classes. In the traditional LDA approach W is found by

argmax
W

(
tr(WTS(b)W)

tr(WTS(w)W)

)
(1)

In this paper we replace the traditional LDA by Locally
Discriminant Embedding (LDE) approach, which is a form of
manifold learning [28]. In LDE the scatter matrices S(w) and
S(b) are defined as

S(w) =
1

2

∑
ij

Aw
ij(xi − xj)(xi − xj)T (2)

Aw
ij =


1

Uw
xi/xj is nearest neighbor of xj/xi
xi and xj are from the same class

0 otherwise

S(b) =
1

2

∑
ij

Ab
ij(xi − xj)(xi − xj)T (3)

Ab
ij =


1
Ub

xi/xj is nearest neighbor of xj/xi
xi and xj are from different classes

0 otherwise

in which two parameters Uw and Ub are the numbers of the
nearest neighbors from the same class and the other class,
respectively. Therefore, the manifold information in the feature
space of xc ∈ RD is captured by the nearest neighbor graphs.

When conventional LDA is used as a classifier in its own
right, only the first C− 1 columns in the transformation matrix
W are relevant. However, if LDA is used for dimensionality
reduction there is no uniquely defined upper bound on the
dimension of the target space. Therefore, we will determine the
optimal dimensionality (d) of the target space experimentally.

2.2. Regularization for obtaining smooth trajectories

Eq. (1) is an over-determined system. Without imposing
additional constraints on the solution, this conventional solution
to W will favor the empirical risk, at the cost of the structural
risk. The weight of the structural risk can be increased by
adding a regularization term R, which leads to

argmax
W

(
tr(WTS(b)W)

tr(WT [(1− γ)S(w) + γR]W)

)
(4)

In Eq. (4) γ (0 ≤ γ ≤ 1) is the weight given to the
regularization term R. Different choices for the matrix R result
in different solutions for minimizing the structural risk.

When we represent phones as a block of 23 frames of
13 MFCC features we have a 299-dimensional space, in
which we have no more than a couple of hundred tokens
of each class. Thus, we have a small-sample-size problem
[23, 24]. This means that the scatter matrices, especially the
within-scatter matrix, are poorly estimated. This is likely to
make the projection matrix W difficult to interpret in physical
terms. For instance, the inter-correlation of features along time,
caused by the continuous movements of the articulators, is
probably under-estimated. Moreover, some spurious structures,
such as the correlation among MFCCs, which is expected to
have been removed by the discrete cosine transform, might
re-appear in the scatter matrices. Ideally, to be interpretable,
the projection matrix W, which can be considered as a set of
basis vectors, should “match” the continuity properties of the
input, in our case the smooth speech trajectories represented in
X. Therefore, there is a necessity for regularizing the scatter
matrix to be consistent with the underlying physical processes
by smoothing the projection matrix along the time axis.

In the following we introduce four regularization terms to
enhance the smoothness and therewith the interpretability of the
projection matrix, by defining R in four different ways.

2.2.1. Enhancing Interpretability by Tikhonov Regularization

The simplest way for imposing smoothness on the
transformation matrix W is by limiting its variance. This can be
accomplished by using Ridge Regression Regularization [22]
or Tikhonov Regularization [21, 23, 24] by setting R = I,
which means minimizing the L2-norm of W.

This regularizer effectively imposes an upper bound on
the variance of the coefficients in the transformation matrix
W, which is equivalent to biasing the estimator. When
setting R = I and increasing the value of γ, Eq. (4) will
increase the bias in the estimate of the within-class scatter
matrix. The bias will weaken the impact of eigenvectors
with large eigenvalues, while the impact of eigenvectors with
small eigenvalues will be strengthened. However, the Tikhonov
regularizer can only decrease the overall variance; it cannot
impose local smoothness.

For γ = 0 Eq. (4) defaults to the unbiased solution. The
optimal value of γ for a specific application and data set must
be found experimentally in a cross-validation design. This also
holds for other choices of R.



2.2.2. Enhancing Continuity by Laplacian Smoothing

While the Tikhonov regularization reduces the overall variance
in the transformation matrix, there is no guarantee that the
derivatives of the sequence of coefficients along the time
dimension are smooth. To realize this, the projection matrix W
must retain the time continuity of the trajectories. ”Continuity”
can be linked to the smoothness of the discriminant functions
that make up W by minimizing the derivatives of the row
vectors (over time). The second-order derivative is the most
commonly-used measure for the smoothness [23,26,27], which
can be quantified in terms of the coefficients in row m of the
M(= 13)×N(= 23) matrix W:

J2(wm) =(wm1 − wm2)
2+

+

N−2∑
i=2

(wm,i−1 − 2wmi + wm,i+1)
2

+ (wm,N−1 − wmN )2

(5)

With this definition, the smoothness of the projection matrix W
is the sum of Eq. 5 over all rows: J2(W) =

∑
m J2(wm).

This can be reformulated in matrix terms as J2(W) =
WTD2D

T
2 W, where the 23 × 23 matrix D2 is the so-called

Laplacian smoother or Neumann discretizer [23, 26]:

D2 =
1

h2
2



−1 1 0
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

0 1 −1


(6)

The weight factor 1/h2
2 is related to the number of grid

points on which the second order derivative along the time
dimension is estimated. Substituting D2D

T
2 for R in Eq. 4

yields the so-called Smoothed LDE method using the 2nd-order
derivatives (SLDE-2 method). Actually, the first-order and
fourth-order derivatives are also widely used for smoothness
penalty [25, 27]. They are obtained by replacing D2 by D1 for
the first-order derivative and D4 for the fourth-order derivative:

D1 =
1

h2
1


−1 1 0

−1 1
−1 1
. . .

−1 1
0 −1 1

 (7)

D4 =
1

h2
4



1 −2 1 0
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . .

1 −4 6 −4 1
1 −4 5 −2

0 1 −2 1


(8)

In fact, the Tikhohov regularizer that penalizes the norm
of W could be viewed as an approach to penalizing the
zeroth-order derivative (D0 = I). Therefore, in this paper,

we will investigate four variants of the Smooth LDE (SLDE),
named by the order of derivative it is based upon (SLDE-n,
n = 0, 1, 2, 4). To be more specific, in SLDE-n the matrix
R in Eq. (4) is replaced by DnD

T
n .

3. Experimental Setup
3.1. The Data: TIMIT

In our phone classification experiments with TIMIT we adhered
to the standard division of the corpus in training, testing, and
tuning data [30]. We use the reduced label set proposed in
[31]: the original 64 labels are collapsed into 48 phone labels,
excluding the glottal stops. We reduce the number of relevant
phone classes further, by excluding all forms of ’silence’; this
leaves us with 44 phone classes.

A short-time Fourier transform is performed on each
utterance with a 25 millisecond Hamming window which is
shifted in 10 millisecond steps. The Fourier coefficients are
transformed into 13 MFCCs: c0 − c12. Phone tokens are
represented by a block of 23 frames, whose center frame is
aligned with that of the phone.

3.2. Classification Task

We investigate binary classification with 44×(44−1)
2

= 946
pairs of phone classes. Actually, a large number of classes
are hardly ever confused. For example, the classification
between vowels and voiceless consonants are likely to achieve
(nearly) 100% accuracy. Even for some pairs from one broad
phonetic class there are virtually no confusions. Therefore,
we focused on the class pairs whose feature space overlap
substantially; knowing how these pairs can be separated is
crucial to understand the phonetic feature space. For this
purpose, we define “confusability” as follows: for each phone
pair, if any of those compared methods yields a classification
accuracy lower than 0.90 or 0.95, that phone pair will be
referred to as “highly confusable” or “fairly confusable”,
respectively.

3.3. Classification Strategy

In our experiments we first reduce the dimensionality of the
phone representations, and subsequently use a weighted k
Nearest Neighbor (WkNN) classifier for the eventual binary
classification task [10]. For any test vector t, we first find
its k nearest neighbors in the training set: t1, t2, ..., tk.
The weights of these neighbors are accumulated by wi =
exp(−||ti − t||2/τ), i = 1, 2, ..., k, in which τ controls the
influence of neighbors. The phone label assigned to t is the
class with the highest aggregated weights.

The LDE procedure for dimensionality reduction requires
setting three parameters, viz. size of the between-class
neighborhood Ub and the within-class neighborhood Uw, as
well as the number of dimensions d of the target space. In [32] it
was found that the classification performance is not sensitive to
variations in the value ofUb andUw, as long as these parameters
have values in a reasonable range. For the research in this paper
we set Ub = 20 and Uw = 6. We also found that the optimal
dimensionality of the target space is d = 10 for consonants
and d = 25 for vowels. The results provided in the following
section are based on these LDE settings. The h in the prefactor
of Ds can be omitted: we normalize Sw and R to achieve an
interpretable balance between them. The WkNN classifier has
two parameters that must be set. In a number of preliminary



Table 1: Statistics of the number of pairs and used tokens of the
“fairly confusable” sets (≤ 0.95), for broad phonetic classes:
Plosives (PL), Strong Fricatives (SF), Weak Fricatives (WF),
Nasals (NS), Semi-Vowels (SeV), Short Vowels (ShV), and
Long-Vowels (LoV)

Nums PL SF WF NS SeV ShV LoV
Pairs 11 4 5 5 4 18 13

Tokens 2841 941 857 1833 1373 6367 2649

Table 2: Statistics of the number of pairs and used tokens
of the “highly confusable” sets (≤ 0.90), for broad phonetic
classes: Plosives (PL), Strong Fricatives (SF), Weak Fricatives
(WF), Nasals (NS), Semi-Vowels (SeV), Short Vowels (ShV),
and Long-Vowels (LoV)

Nums PL SF WF NS SeV ShV LoV
Pairs 2 1 1 1 2 9 3

Tokens 476 502 169 557 669 3149 634

experiments we searched for optimal values of these parameters
in the ranges 15 ≤ k ≤ 40 and 3.5 ≤ τ ≤ 6.5. It appeared
that varying these parameters does not have a significant effect.
Therefore, we select k = 25 and τ = 4.5 for the configuration
of the WkNN classifier in the remainder of this paper.

3.4. Comparing the Methods

We will compare the original method LDE with the four
regularized variants. To fully and fairly investigate their
effectiveness, we tune the weight γ in Eq. (4) on the following
grid: from 0 to 0.1 (stepsize 0.01), from 0.1 to 0.9 (0.05), from
0.9 to 0.99 (0.01), and finally from 0.99 to 0.999 (0.001).

4. Experimental Results
4.1. Classification Per Broad Class

Since different broad phonetic classes probably contains
phones produced by disparate mechanisms, this subsection
reports the classification results for each broad phonetic class:
Plosives (PL), Strong Fricatives (SF), Weak Fricatives (WF),
Nasals (NS), Semi-Vowels (SeV), Short Vowels (ShV), and
Long-Vowels (LoV). According to Subsection 3.2, only the
“fairly confusable” and “highly confusable” binary pairs are
concerned. Table 1 and Table 2 introduce the numbers of phone
pairs and tokens for each broad phonetic classes. It should be
mentioned that the number of tokens might be larger than the
number of overall tokens in each broad phonetic class since
parts of phones might be visited more than once. For instance,
the plosive /b/ is easily confused by /p/ and /g/, and thus the
test samples of /b/ will be at least used twice.

The details of classification accuracy underlying the data
are shown in Table 3 (for “fairly confusable” pairs) and Table 4
(for “highly confusable” pairs). Each number (classification
accuracy) in these tables is computed by the number of correctly
tokens divided by the number of used tokens (given in Table 1
and Table 2), for each broad class. These numbers can be
interpreted by the weighted average of binary classifiers and the

Table 3: Performance comparison of the average binary
classification accuracy of five methods: LDE and SLDE-n
(n = 0, 1, 2, 4) on the fairly confusable pairs (≤ 0.95), for
broad phonetic classes: Plosives (PL), Strong Fricatives (SF),
Weak Fricatives (WF), Nasals (NS), Semi-Vowels (SeV), Short
Vowels (ShV), and Long-Vowels (LoV)

LDE SLDE-0 SLDE-1 SLDE-2 SLDE-4
PL 92.90 93.18 93.33 93.53 93.33
SF 91.32 90.92 91.59 91.45 91.60
WF 91.72 92.51 93.26 93.28 93.10
NS 89.69 90.18 90.27 90.37 90.63
SeV 91.59 92.35 92.72 93.10 92.99
ShV 89.29 89.70 89.87 89.73 89.85
LoV 92.46 93.37 93.66 93.34 93.53

Table 4: Performance comparison of the average binary
classification accuracy of five methods: LDE and SLDE-n
(n = 0, 1, 2, 4) on the highly confusable pairs (≤ 0.90), for
broad phonetic classes: Plosives (PL), Strong Fricatives (SF),
Weak Fricatives (WF), Nasals (NS), Semi-Vowels (SeV), Short
Vowels (ShV), and Long-Vowels (LoV)

LDE SLDE-0 SLDE-1 SLDE-2 SLDE-4
PL 88.13 88.76 89.02 89.56 89.36
SF 88.05 87.05 88.25 88.25 88.25
WF 85.80 88.76 89.92 89.15 89.66
NS 81.51 82.94 83.30 83.30 83.75
SeV 88.34 89.12 89.54 90.47 90.06
ShV 85.28 85.75 85.88 85.60 85.75
LoV 86.04 86.91 86.69 86.67 86.91

weight of a binary classifier depends on the frequency of two
classes of phones with which this classifier is involved.

The most important information from these tables is that
nearly all regularization terms seem to be beneficial to the
original LDE algorithm. This suggests that the projection
matrix W does require some structures to prevent the arbitrary
shapes. The “SLDE-0” method, which actually is the Tikhonov
regularizer, achieves the performance slightly inferior to that
of other methods penalizing the “≥ 0′′-order derivatives,
especially for those consonants (PL, SF, WF, NS and SeV
in Table 3 and Table 4). For vowels (referring to ShV and
LoV), the Tikhonov regularizer yields competitive classification
accuracy with the other three regularizers. This might imply
that the trajectory structures has been fully explored in Sw

for the vowels, but less so for the consonants. Among the
remaining three regularization terms, there is no one obviously
outperforming the other two in all cases, which means that
the manifold of the phones from different broad classes have
different shapes and thus should be smoothed in different ways.

4.2. Analysis on the Tuning Parameter γ

An alternative to analyze the effectiveness of regularizers is
to explore how the performance varies as a function of the
weighing parameter γ. This is shown in Fig. 1 for consonants
and Fig. 2 for vowels.
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Figure 1: Classification accuracy of “fairly confusable”
consonants as a function of the smoothness parameter γ.
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Figure 2: Classification accuracy of “fairly confusable” vowels
as a function of the smoothness parameter γ.

Both figures refine our earlier observation that adding the
regularization term is beneficial to LDE (LDE corresponds
to γ = 0). Moreover, the performance of “SLDE-0” is
comparable with that of other three regularization terms for
vowels but not for consonants. This can be deduced from the
observation that the peak region of “SLDE-0” (the blue curve
in Fig. 2) stays on a similar horizontal level as the other curves
do. However, for consonants, the peaks of “SLDE-n” (n ≥ 0)
are consistently higher than those of “SLDE-0” (c.f. Fig. 1).
The figures show that the three methods “SLDE-n” (n > 0)
achieve similar performance.

The three smoothness regularizers have different
meaningful γ-ranges, where their performance is superior
to the original LDE (γ = 0). Since all these regularizers adopt
the same exhaustive tuning grid and all related matrices (Sw

and different Rs) are normalized, we argue that the higher
the order of the derivative of W we use, the most robust the
performance is. More precisely, SLDE-4 (corresponding to the
magenta curves with “diamonds”) outperforms LDE for almost
all values of γ, while for n < 4 “SLDE-n” has a narrower
optimal γ-range.

In summary, this sensitivity analysis further substantiates
the effectiveness of introducing R into LDE and indicates the
robustness for variations in γ when applying the fourth-order

derivative of W for regularization.

4.3. The Impact of R on (Sw + γR)−1

In this part, the deeper analysis on the impact of the
regularization term is given by showing the structural alteration
of the inverse matrix of the regularized within-class scatter
matrix: (Sw + γR)−1. This is due to the fact that (Sw +
γR)−1Sb directly determines the projection matrix W. Fig. 3
is an example with R = D2D2

T . We choose D2 to guarantee
the inferior results when γ approaches 0 and 1. Four images in
this figure are 23 × 23, which correspond to the counterpart of
(Sw + γR)−1 of the first MFCCs of 23 frames. As indicated
in the figure, the upper-left one is the original LDE, meaning
γ = 0. The upper-right and the lower-left images are with
the small and medium γs. When γ increases (from “zero” to
“small” to “medium”), the corresponding image will have a
wider “band”, which means the enhancement of the structures
over time. Referring to Fig. 1 and Fig. 2, the time-trajectory
structure might explain the gain achieved by enlarging γ.

However, the lower-right image, whose γ is large enough to
suppress the contribution of Sw when computing (Sw+γR)−1,
almost loses the structure of (Sw)−1, especially on its diagonal
part. This might explain the (great) inferior performance when
γ approaches 1 in Fig. 1 and Fig. 2.

Therefore, it might be concluded the impact of R on Sw

is simultaneously enhancing the time-trajectory structure and
retaining the details of Sw with the trade-off parameter γ.
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Figure 3: Four special cases of (Sw + γR)−1: γ = 0, small
γ, medium γ, and large γ. The shown part corresponds to 23
frames of first MFCC.

5. General Discussion and Conclusion
To model the time-continuity of speech trajectories for the
purpose of phonetic classification, this paper introduces the
idea of smoothing the projection matrix of Linear Discriminant
Embedding [28], a supervised dimensionality reduction method
adopting the manifold information which was proven superior
over the conventional Linear Discriminant Analysis. The basic
idea is realized by penalizing W’s derivatives to enhance the
smoothness of the underlying manifold. Specifically, four
orders of derivatives are investigated in this paper, namely the
zeroth-order (Tikhonov regularizer), first-order, second-order,
and fourth-order derivatives. All of them are implemented by
adding the specified regularization term R to the within-class



scatter matrix Sw.
The binary classification performance on the confusable

phone pairs briefly reveals the effectiveness of imposing the
regularization terms. When comparing the four alternatives,
the zeroth-order one appears to be moderately inferior to the
other three comparable regularizers for consonants but yield
competitive classification accuracy in the case of vowels. This
might indicate a larger necessity of exploiting the continuity
within the trajectories for consonants compared to vowels. The
robustness of γ in Eq. (4) is also explored. Both Fig. 1
and Fig. 2 indicate that higher-order derivatives can generate
a more robust regularizer: using the fourth-order derivative
results in improvement over LDE for nearly all γs in the
[0, 1]-grid. More importantly, the reason why the regularization
term R leads to improvement is likely to be related to how
R influences structures of (Sw)−1 over time (i.e. “frame
number” in Fig. 3). The observation is that tuning γ should
enhance the time-trajectory structure without losing too much
the details in Sw. The analysis on (Sw + γR)−1 suggests that
regularization is an effective way to integrate prior information
into a small-sample-size problem.

In the near future, our research aim is to analyze the speech
production mechanisms, relate them with the smoothness
regularizer and thus get more insight into the feature space of
speech trajectories. Another interesting topic is to integrate
this approach with ASR. Probably regularization is useful for
noise-robust ASR since the time-continuity of speech might be
robust to environmental noise. Finally, a theoretical analysis on
how exactly R perturbs the eigenvectors of (Sw + γR)−1Sb

will be a research topic in the near future.
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