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Abstract
The most widely used acoustic feature extraction meth-

ods of current automatic speech recognition (ASR) systems are
based on the assumption of stationarity. In this paper we exten-
sively evaluate a recently introduced filter stable, non-stationary
signal processing method, which relies on an adaptive part-
tone decomposition of voiced speech to obtain alternative fea-
ture vectors for ASR. The non-stationary filterbank allows for
more noise robust amplitude based features by suppressing the
between-harmonics regions. Furthermore, by adapting the cen-
ter filter frequencies to the underlying acoustic modes, it is pos-
sible to obtain useful phase features which can be interpreted
in terms of the non-stationary dynamics within the vocal tract.
The features are evaluated on different tasks ranging from vowel
classification up to large vocabulary continuous speech recog-
nition.
Index Terms: non-stationary, adaptive filter, noise robust,
phase features, ASR

1. Introduction
Assuming weak stationarity, the time-frequency decomposition
of speech signals is mainly based on Short-Time Fourier Trans-
form (STFT). Although it is well known, that speech contains
non-stationary parts, the speech production model is described
on a short-time scale (about 30ms) as response of a linear time
invariant system to wide sense stationary or quasi-periodic ex-
citation.

However, the relevant components of the phonetic inven-
tory of human languages are characterized also by various non-
stationary processes (e.g. word accents, diphthongs), where
the underlying physiological processes generate characteristic
amplitude- and frequency modulation. Tonal languages in-
crease this list by different phonetic interpretation of pitch con-
tours. Thus, the time evolution of the fundamental frequency,
in particular, challenges the stationarity assumption even inside
a short analysis window.

Analyzing chirped sinusoids with STFT leads to typical
smearing effects in the amplitude spectrum [1]. Furthermore,
as was shown in psychoacoustic experiments, the introduction
of frequency modulation into voiced speech is beneficial to the
intelligibility in the presence of simultaneous speakers, indicat-
ing that the human auditory system can profit from adaptation
to the time-varying harmonic modes [2].

The relevance of pitch for intra-species communication, in
particular for voiced speech of humans, suggests that it might
be advantageous for the analysis of voiced speech to replace the
a priori choice of filter frequencies by a closed loop adaptation
to the input signal.

In [3] a STFT comparable filterbank was generalized by
introducing time-dependent filter frequencies and an iterative
adaptation of the filter frequency contours. The adaptation leads
to non-stationary bandpass filters suited to generate filter out-
puts with uncorrupted phases. The filter frequency contours
were obtained as stable fixed point (asymptote) of the iterative
update of the filter frequency contours by using frequency con-
tours of the filter outputs. When choosing appropriate band-
widths such filters can e.g. be used to extract uncorrupted
phases of the underlying harmonic modes of a vowel.

The present paper replaces the STFT based amplitudes of
current ASR systems by amplitude outputs of appropriately
adapted non-stationary gammatone filters. As a more innovative
step, the amplitude based part of the acoustic feature vector is
supplemented by phase differences of neighbouring part-tones.
We demonstrate that such phase cues are suited to detect the
phase jumps which result from the passage of a harmonic mode
through the resonance of a formant. The novel feature vector is
extensively evaluated in vowel classification, phoneme recogni-
tion, and small and large vocabulary speech recognition tasks.
Moreover, the noise robustness is tested on standard tasks for
noisy speech.

The paper is organized as follows, Section 2 gives a short
overview of non-stationary bandpass filters. The filter imple-
mentation for non-stationary signal analysis is discussed in Sec-
tion 3. The details of non-stationary features are presented in
Section 4. The extensive experimentation with the derived fea-
tures are carried out in Section 5. The paper closes with conclu-
sions.

2. Non-Stationary Bandpass Filter
The time-frequency decomposition of signals by bandpass fil-
ters with a priori fixed center frequencies can be generalized
by introducing time dependent center filter frequencies (CFF)
ωj(t). Denoting the input signal as S(t), the envelope of the
impulse response of the jth bandpass filter as Wj(t) and the
time delay of the envelope maximum of the impulse response
as τj , the response of jth complex subband Xj(t) can be ex-
pressed as

Xj(t) =

t+τj∫
−∞

S(τ)Wj(t− τ) exp

i t∫
τ

ωj(τ
′)dτ ′

 dτ.

(1)

The instantaneous phase ofXj(t) will be denoted as ϕj(t).
As was shown in [4], it is possible to obtain the uncorrupted
instantaneous phase Φj(t) of a non-stationary sinusoid (which



may be interpreted e.g. as a well separable single (jth) har-
monic mode of a vowel), if one succeeds to adapt the CFF to
the instantaneous frequency of the underlying mode:

ϕj(t) = Φj(t) if ωj(t) = Φ̇j(t), (2)

where Ωj(t)
.
= Φ̇j(t) will denote the instantaneous frequency

of the analyzed sinusoid. Furthermore, it was shown that a map-
ping function F of the filter frequency contour can be defined
which leads to the desired equality of Eq. (2). As indicated
in Eq. (1) this mapping transforms a filter frequency contour
ωj(t) within the analysis window t′ ≤ t ≤ t′′ to the instanta-
neous filter output phase contour ϕj(t). Together with the time
derivative operator d/dt the mapping obtains an identical input
and output range and can thus be iterated

ω
(n+1)
j (t) :=

dϕ
(n)
j

dt
=

d

dt
F
{
ω

(n)
j (t)

}
for t′ ≤ t ≤ t′′.

(3)

The left hand side of (3) denotes the updated CFF for the n+ 1.
iteration step obtained from output frequency (dϕ(n)

j /dt) of the
nth iteration step, whereas the right hand side expresses the fil-
tering with the CFF contour ω(n)

j (t), resulting in filter output

X
(n)
j (t). Eq. (3) has a fixed point — an invariant CFF con-

tour — given as ω(∞)
j (t) = Ωj(t). As a characteristic fea-

ture of this fixed point, three frequency contours are identical:
the one of the CFF, ω(∞)

j (t), the one of the output frequency,

dϕ
(∞)
j (t)/dt, and the one of the input frequency, Ωj(t). The in-

variant filter frequency contour generates an output phase which
is identical to the phase of the input: ϕ(∞)

j (t) = Φj(t).
For gaussian type impulse responses Wj(t) and differen-

tiable input frequency contours which can be well approximated
by a linear function (linear chirp), it could be shown that the
convergence in the neighbourhood of the fixed point is a stable
one and converges with the third power of the deviation from
the fixed point [5]. Such a fixed point is often called as super
stable fixed point.

All input signals with a phase velocity Ωj(t) which is sub-
stantially different from a given CFF contour ωj(t) experience
a damping due to interference. Due to this bandpass property,
it is expected that a broadband input signal, given e.g. as a su-
perposition of several sinusoids with sufficiently separated or
different frequency contours, will result in several stable fixed
points, each with a finite size basin of attraction.

3. Gammachirp Filter
The well known Gammatone (GT) bandpass filters are ideally
suited to be generalized towards non-stationary signal process-
ing. A computationally efficient, complex valued, all-pole ap-
proximation of a GT filter in the discrete time domain was de-
fined in [6] as a cascade of first-order filters. The difference
equation of complex bandpass cascade element is

Xj [k] = S[k] + αj ·Xj [k − 1] (4)

with αj = λ · exp (i ωjT ) ,

where Xj [k] denotes the jth filter output, and S[k] the sampled
input signal. The filter coefficient αj is the complex pole of the

first order filter, where λ depends on the bandwidth parameter,
ωj denotes the center frequency of the jth bandpass filter, and
T = 1/fs the sampling period. For the separation of harmonics
with non-stationary frequencies the GT filter of Hohmann was
generalized in [3] and extended by the capability to adapt its
center frequency ωj to the instantaneous chirp of the underlying
mode

αj [k] = λ · exp (i ωj [k]T ) . (5)

The time dependency of the center frequency ωj [k], being in-
troduced into Eq. (4), can be interpreted as a computationally
efficient time discrete implementation of gammachirp filter of
Eq. (1). Expressing the filter phase of the bandpass filter in
Eq. (1) in discrete time domain results in

t∫
τ

ωj(τ
′)dτ ′

∣∣∣∣∣∣
t=kT
τ=k′T

=

k∑
k′′=k′+1

k′′T∫
(k′′−1)T

ωj(τ
′)dτ ′

= T

k∑
k′′=k′+1

ωj [k
′′], (6)

where ωj [k] is introduced as the average filter frequency be-
tween two samplings. Assuming piece-wise linear filter fre-
quency, ωj [k] can be expressed as:

ωj [k] = ωj

(
T

(
k − 1

2

))
(7)

if ωj(t) = ωj(t
′) + ω̇j · (t− t′) and t′ < {t, kT} < t′′.

Thus, the momentary frequency of the discrete non-stationary
Gammatone filter reflects the average frequency between two
samples instead of the sampled continuous filter frequency. In
case of linear gammachirp filter this corresponds to a half sam-
ple correction term in the sampled version of ωj(t).

4. Features Derived from Non-Stationary
Signal Processing

For voiced speech signals as input and sufficiently narrow band-
widths of the filters (∼60Hz) the basins of attraction of the
filter stabilization process can be expected to have a harmonic
structure in the sense that different filter-stable frequency con-
tours can be reached from different harmonic start contours.
Furthermore, since the convergence of the filter stabilization
process is extremely fast, we can expect that a single iteration
step might be sufficient. To obtain the harmonic start contours
ω

(0)
j (t) = j · F0(t), a conventional fundamental frequency es-

timator [7] is applied to extract F0(t). For the iterative filter
update process the output frequencies of the filters are approx-
imated by linear chirp in 40ms analysis window, and the new
parameters are estimated according to [8]. For the unvoiced re-
gions without valid F0 estimation, linear interpolation between
voiced regions is performed. Furthermore, the filter update is
not executed in unvoiced regions.

4.1. Amplitude features

In order to integrate the amplitude output of non-stationary fil-
ters into the standard MFCC feature extraction, the windowing
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(b)

Figure 1: (a) Spectrogram and (b) phasegram derived from the
reconstructed part-tones of an utterance from TIMIT database

and STFT block is replaced by a bank of GT filters with time de-
pendent center filter frequencies [1]. Covering every harmonic
in the spectrum, ωj(t) < ωnyquist leads to a varying number
of filters. This issue is automatically solved by the Mel trian-
gular critical band integration which ensures constant feature
space dimension. According to the MFCC pipeline, the further
processing steps correspond to the application of logarithm, dis-
crete cosine transformation (DCT), and segment-wise mean and
variance normalization.

4.2. Phase features

As shown in [9], the time evolution of appropriately chosen rel-
ative phase shifts of harmonics shows a characteristic pattern
which can often be interpreted in terms of underlying formant
resonances of vowels. The phase features of the present study
are chosen as (wrapped) differences of the relative phases of
neighboring filter-stable part-tones:

∆ϕj(t) = ϕj(t)− jϕ1(t)− (ϕj−1(t)− (j − 1)ϕ1(t))

= ϕj(t)− ϕj−1(t)− ϕ1(t). (8)

To obtain constant feature dimension at every time point,
∆ϕj(t) is interpolated onto a fixed set of frequencies having
the same resolution as the STFT.

Fig. 1 shows the Hamming windowed STFT amplitude
spectrum and the corresponding phasegram of an utterance from
the TIMIT corpus. In the regions where a well defined F0 is
available, the typical formant structure of the utterance can eas-
ily be recognized from the phasegram. Based on the observa-
tion that stable patterns of the phasegram are mainly limited to
the lower frequency range, the phase feature extraction is lim-
ited to the range up to 2500Hz. Representing a complementary
cue, the relative phase of harmonic neighbors can be expected to
provide a promising supplementary acoustic feature for speech
recognition.

5. Experiments
5.1. Vowel classification and phoneme recognition

5.1.1. Experimental setup

As a first investigation of phase and amplitude features ex-
tracted from filter-stable part-tones, vowel classification and
phoneme recognition experiments are performed on the TIMIT
corpus. Like in many previous studies the original 61 phones of
TIMIT [10] are mapped to a smaller subset of 39 phones.

For vowel classification only those feature vectors are con-
sidered, which are labelled as one of the 14 vowels in the
manual alignment. Keeping the number of parameters con-
stant, the Multi Layer Perceptron (MLP) based vowel classi-
fier is trained on nine consecutive frames of the features. The
3-layer MLPs are trained using cross-entropy criterion and ap-
proximate phoneme class posterior probabilities. As training set
the standard 3696 ’si’ and ’sx’ sentences are chosen resulting in
∼273000 feature vectors. Ten percent of the training set (cho-
sen randomly) is used as cross validation (CV) set for adjusting
the learning rate and to prevent overfitting. Whereas the Core
test contained ∼22000, the Full test set consisted of ∼160000
vowel related feature vectors. The classification results of the
present study are obtained by classifying every feature vector
of each vowel token independently. For comparison with pre-
vious work (e.g [11]), the classification errors achieved at the
midpoint of each vowel token are also reported.

To perform the phoneme recognition on the TIMIT
database, Gaussian Mixture based acoustic Models are trained
on concatenated MFCC and TANDEM [12] features, where the
single hidden layer MLP based posterior features are trained us-
ing either phone or phone state target. During the recognition a
bigram phoneme language model estimated on the training data
is used.

5.1.2. The effect of bandwidth and noise level

In the first experiments the filterbank is not iterated, however,
the F0 contour used for the CFF of the higher harmonics is ex-
tracted on clean data. To analyze the interaction between the
filter bandwidth and F0, the training and test corpora are split
into male (lower F0) and female (higher F0) parts and are used
to train separate classifiers by filtering the data with different
bandwidth. About 30% of all vowel related feature vectors be-
long to female speakers. Furthermore, different levels of white
noise are added to both the training and test recordings to inves-
tigate the noise sensitivity of the extracted features. The maxi-
mum quantization level of the input signal corresponds to 0dB.

As can be seen in Table 1, the MFCC features clearly
outperform the non-stationary filter based phase features
(rel.NSGT phase). However, the classification error rates
achieved by phase features alone without any energy related
features are remarkable. Since the phase features are not post
processed in this experiment, their results are also compared
to the STFT amplitude spectrum (log(|STFT(.)|)). The experi-
ments reveal that the usefulness of the phase features defined in
Eq. 8 decreases with increasing noise level, especially in case of
male speakers (low F0). The experiments also show that narrow
band filtering is more beneficial in noise and that the bandwidth
becomes less important for higher F0. In case of male speak-
ers (lower F0) narrow band filtering should be applied to avoid
interference form the neighboring harmonics, which could de-
grade the classification performance.



Table 1: Vowel classification error [%] achieved with relative
phase difference (8) of the output of the non-stationary filters,
results are compared to standard features

Added
noise
level
[dB]

Gen
de

r
Features

rel.NSGT phase

log
(|S

TFT(.)
|)

M
FCC

Bandwidth [Hz]
40 60 80 100 120

None
F 50.0 49.5 49.0 48.5 49.3 37.7 34.0
M 44.8 44.0 45.9 50.6 56.5 30.7 28.7

-60
F 52.0 52.0 52.0 54.1 55.1 39.3 32.5
M 50.8 54.4 58.6 60.2 62.4 31.5 28.8

-40
F 71.6 71.5 73.7 74.1 75.2 54.1 45.8
M 71.6 72.2 72.7 73.4 73.8 44.0 40.0

Table 2: Vowel classification error [%] achieved with the loga-
rithmized amplitude output of the non-stationary filter, results
are compared to standard features

Added
noise
level
[dB]

Gen
de

r
Features

log(|NSGT(.)|)

log
(|S

TFT(.)
|)

M
FCC

Bandwidth [Hz]
40 60 80 100 120

None
F 41.0 40.2 39.7 39.4 38.8 37.7 34.0
M 33.9 33.3 32.2 32.6 32.8 30.7 28.7

-60
F 40.2 39.3 39.7 39.2 39.7 39.3 32.5
M 34.0 32.9 33.7 33.2 33.3 31.5 28.8

-40
F 49.5 49.0 49.3 49.6 49.9 54.1 45.8
M 43.2 42.9 43.2 44.5 45.9 44.0 40.0

The experiments were also repeated with the ampli-
tude output of the non-stationary gammatone filterbank
(log(|NSGT(.)|)) The results can be seen in Table 2. Similarly
to the phase features the logarithmized output of the filterbank
is interpolated onto fixed frequencies. The amplitude output
of the non-stationary gammatone filterbank achieves compa-
rable results to logarithmized STFT amplitude. Furthermore,
the log(|NSGT(.)|) features depend less sensitively on the band-
width than the phase. In case of higher noise (-40dB) level the
suppression of between harmonics regions is clearly advanta-
geous, and the log(|NSGT(.)|) outperforms log(|STFT(.)|), indi-
cating the noise robust property of narrow band F0 synchronous
signal processing. However, for the clean condition the suppres-
sion of between-harmonics regions leads to filtering out useful
information, and thus to performance degradation. Using con-
stant bandwidth, the higher F0 leads to wider between harmon-
ics regions, thus the female results show more bandwidth sensi-
tivity in clean speech condition.

5.1.3. Vowel classification

Considering the results in Section 5.1.2, a filter bandwidth of
60Hz is selected for the further experiment. The effect of the
filter stabilization is investigated by using the phase features.
The results based on the complete training set (without splitting
up) are shown in Table 3. As can be seen, the classical mean
and variance normalized cepstral coefficients (MFCC) achieve
the best accuracy. As a more fair comparison between phase
and amplitude based features, the phase features are also com-

Table 3: Vowel classification error [%] on TIMIT database us-
ing non-stationary phase and standard amplitude based fea-
tures (results achieved by classifying exclusively at the midpoint
of each vowel are indicated in brackets)

rel.phase

Test filter update log(|STFT(.)|) MFCC
MFCC

+DCT(rel.phase)
no yes

CV 48.9 49.4 35.5 33.2 31.2
(44.3) (45.3) (31.3) (29.4) (27.6)

Core 50.8 50.4 38.4 35.5 34.1
(46.7) (46.1) (34.1) (31.1) (29.8)

Full 49.4 49.4 37.2 34.7 33.1
(45.2) (45.2) (33.0) (30.4) (29.2)

Table 4: Comparison of GMM based phoneme recognition error
rates using only MFCC or combined MFCC+phase based MLP
posterior features, where MLPp and MLPps indicate phone or
phone state posteriors, respectively

AM Features
Test

Core Full

mon
op

ho
ne MFCC 31.1 29.7

MFCC+MLPp(MFCC) 29.7 28.2

MFCC+MLPp(MFCC+phase) 28.6 27.5

tri
ph

on
e

(85
0)

MFCC 28.6 28.2

MFCC+MLPp(MFCC) 28.6 28.1

MFCC+MLPp(MFCC+phase) 27.4 27.0

MFCC+MLPps(MFCC) 27.8 27.0

MFCC+MLPps(MFCC+phase) 27.2 27.0

pared with the logarithmized amplitude of short-time Fourier
spectrum (log(|STFT(.)|)). Again, there is no doubt that the
phase based cues alone perform worse than MFCC or the am-
plitude features, however the phase based results deserve atten-
tion. Furthermore, there is insignificant difference between the
results of phase features with or without additional filter update.
The fact that the phase features do not show improvement after
filter update underlines that a frequency contour of the filter out-
put is much more accurate than the corresponding center filter
frequency contour. Since the iterative filter update does not lead
to performance improvement, in the following the integer har-
monics of the F0 estimation are used as center filter frequency
contours.

In addition, Table 3 shows results achieved with the con-
catenated MFCC and phase features, as well. For this exper-
iment the dimension of the phase features is reduced to 8 by
DCT (optimized on CV set). Comparing to MFCC alone, the
concatenated features lead to a 4% relative decrease in the clas-
sification error. The difference between the two classifiers is
statistically significant at 99.5% confidence level on the full test
using McNemar’s test.

5.1.4. Phoneme recognition

The phase features are further tested on a phoneme recognition
task. Using Gaussian Mixture Model (GMM) based Hidden
Markov acoustic Models (HMM), the phase features are inte-



grated with the TANDEM [12] approach into the feature extrac-
tion. As can be seen in Table 4, the non-stationary gammatone
phase features improve the recognition performance if mono-
phone acoustic models are used, however, if the more complex
tied-triphone state based modeling with phone state label based
MLP features are applied, the phase features cannot contribute
to phoneme recognition error reduction on the full test set.

5.2. Noisy ASR experiments

Based on the observation of Section 5.1.2, the noise robustness
of amplitude features extracted from non-stationary bandpass
filterbank is investigated by conducting noisy speech recogni-
tion experiments on Aurora 2 and Aurora 4 tasks. The ampli-
tude features are extracted according to Section 4.1 and are de-
noted in the followings as NSGT. Since the performance of the
relative phase of the non-stationary filterbank is highly sensi-
tive to the noise level, the phase features are discarded in these
experiments.

5.2.1. Experimental setup

The GMM based acoustic models are trained using maximum
likelihood criteria. Instead of the recognizer defined in [13],
another publicly available recognizer is used [14]. In the dig-
its string (Aurora 2) recognition experiments, the digits are de-
scribed by whole-word models, such that the number of HMM
states is proportional to the number of phonemes per word.
Whereas in the intermediate size vocabulary continuous speech
recognition task, Aurora 4, the words are modelled by 4500 tied
triphone states, the recordings sampled at 16kHz are used, and
a trigram language model is applied during the recognition.

5.2.2. Results

The recognition performance of the different features are given
in Table 5. Instead of reporting the average results achieved over
signal-to-noise ratio range between 0 and 20dB, the total aver-
age is shown. As can be seen, the NSGT features outperform the
MFCC on the noisy parts, while — as it is observed on TIMIT
in Section 5.1.2 — the suppression of the regions between the
harmonics deteriorates the results in case of clean data. Op-
timization of the bandwidth parameter on test set A resulted
in 75Hz bandwidth, which corresponds to a coverage of ap-
prox. 45% of the spectrum. Experiments on multi-conditional
training data show, that the advantage of NSGT over MFCC
vanishes, and that the MFCC slightly outperformed the NSGT,
suggesting that the generalization of the acoustic model cannot
be improved by our noise-suppression method.

In continuous intermediate size vocabulary experiments
similar observations can be made, the results are shown in Ta-
ble 6. The improvement originates mainly from the noisy part
of the corpus (Test 3 - Test 7). In order to isolate the influence of
the dynamic filter parameter, a further set of experiments is per-
formed on Aurora 4. The STFT filterbank in the MFCC pipeline
was substituted by a set of stationary GT filters (MFCCGT). As
can be seen, the MFCCGT features perform similar to MFCC,
therefore the improvement achieved by NSGT features clearly
relates to the F0 synchronous non-stationary signal processing.
Moreover, ROVER [15] based system combination indicates
complementarity between the MFCC and NSGT features lead-
ing to improvements on all test sets.

Table 5: Word error rates [WER] achieved on Aurora 2 using
clean training data and different features

SNR MFCC NSGT
[dB] A B C A B C

Clean 0.9 0.9 1.0 1.1 1.1 1.4
20 1.7 1.4 1.8 1.6 1.6 2.2
15 3.5 2.7 3.0 2.9 2.5 3.5
10 7.5 6.1 6.8 5.7 5.5 6.1
5 16.7 15.4 16.5 13.1 14.0 14.5
0 37.3 36.9 38.2 32.2 34.3 36.1
-5 69.1 69.5 68.1 66.5 66.9 64.5

Avg. 19.5 19.0 19.3 17.6 18.0 18.3
(-9.7) (-5.3) (-5.2)

Table 6: Detailed WER results on AURORA 4 using differ-
ent features. MFCCGT indicate the substitution of STFT filter-
bank with stationary Gammatone filters in the MFCC pipeline,
whereas ROVER combines MFCC and NSGT systems

System Test set Avg.1 2 3 4 5 6 7
M

ic
ro

ph
on

e
Se

nn
he

is
er MFCC 3.8 8.7 11.9 18.1 17.6 15.2 20.3 13.7

MFCCGT 4.0 9.0 13.0 18.5 18.0 14.7 21.2 14.1
NSGT 4.9 9.7 13.2 17.8 16.6 14.7 18.9 13.7

ROVER 3.6 7.4 11.5 15.5 14.6 12.8 16.5 11.7

U
nk

no
w

n MFCC 16.3 20.9 35.2 37.4 39.3 33.1 37.3 31.4
MFCCGT 16.1 20.2 35.3 35.9 38.2 33.7 38.2 31.1

NSGT 14.8 23.5 30.8 33.7 34.3 30.3 33.6 28.7
ROVER 13.7 19.8 29.0 30.5 32.8 28.4 31.6 26.5

5.3. Large vocabulary speech recognition

In the final experiments we investigate the non-stationary fea-
tures in an English large vocabulary continuous speech recog-
nition task. The collected data of the European Parliament Ple-
nary Sessions (EPPS) are recorded in clean condition with pro-
fessional equipment, therefore the phase features are also tested.

5.3.1. Experimental setup

To train the GMM acoustic model containing 4500 generalized
triphone states 88 hours of speech data are used. The acoustic
models consist of Gaussian mixture distributions with a glob-
ally pooled diagonal covariance matrix. The performance of
the final systems are evaluated on the development (Dev07) and
evaluation (Eval07) data of 2007. Each corpus contains 3 hours
of audio data, and the development corpus is used for tuning.
Instead of training the mixtures from scratch, an alignment cre-
ated by a previous system is applied to initialize the 6-state left-
to-right HMMs.

5.3.2. Results

To investigate the complementarity of the NSGT features to the
standard stationary signal-processing based features, the fol-
lowing features are extracted: MFCC, PLP [16], GT [17]. As
the results in Table 7 show, the NSGT system performs slightly
worse than the MFCC system. Considering the fact that this
recognition task is based on clean data, the results confirm again
that the suppression of between harmonics region is undesired
in clean condition. Nevertheless, ROVER based system com-



Table 7: Comparison and ROVER combination results of stan-
dard and NSGT features on EPPS 2007 corpora

Features Test
MFCC GT PLP NSGT Dev07 Eval07

X 17.3 16.2
X 17.6 16.8

X 17.8 16.8
X 18.3 17.5

X X 16.3 15.3
X X 16.5 15.6
X X 16.8 15.9
X X X 16.2 15.1
X X X X 16.0 15.0

Table 8: Results on EPPS 2007 corpora, using supplementary
non-stationary signal processing based phase features in TAN-
DEM approach

Features Test
Dev07 Eval07

MFCC 17.3 16.2
MFCC+MLP(MFCC) 16.2 14.9

MFCC+MLP(MFCC+phase) 16.5 15.0

binations show that NSGT and MFCC can lead to performance
improvement. As can also be seen, using NSGT as fourth sys-
tem improves the combination results of the three standard fea-
tures further, although the gain is not high.

Table 8 shows experiments using phase features, where the
relative phase shifts of neighboring part-tones are integrated
into the feature extraction according to Sec. 5.1.4. The ex-
periments are carried out with 3-layer MLP based posterior fea-
tures trained on phoneme target labels only. The phase features
do neither improve nor deteriorate the final recognition perfor-
mance measured on the Eval07 set.

6. Conclusions and Future Directions
In this study a recently proposed non-stationary signal pro-
cessing technique was evaluated on numerous speech recog-
nition tasks. Investigating the interaction between F0 range,
noise level, and bandwidth, amplitude and phase based features
were designed to extract physical parameters of the acoustic dy-
namics of voiced speech. Using a bank of narrow band non-
stationary filters, the experiments revealed that a precise con-
ventional estimation of the F0 contour and its higher harmonics
is sufficient to obtain the non-stationary filter frequency con-
tours, thus making the filter update unnecessary. Having tested
the derived features in many speech recognition applications,
we can conclude, that the amplitude output of the non-stationary
filterbank can result in noise robust features for situations with
mismatched training and testing data. Considering the phase
features as supplement to amplitude based cues, improvement
observed in low-level classification experiments did not gener-
alize to large vocabulary continuous speech recognition.

As future direction, since the separation of harmonics with
non-stationary filters was successfully demonstrated, there is
also a hint that the time variant filters might be useful to sup-
port speech separation. Inspired by the success of the STFT,
the present study is based on filterbanks with STFT like non-

audiological bandwidths. The investigation of the convergence
behavior of filters with audiological bandwidth covering several
sinusoids could be also part of the further research.
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