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Abstract
In recent works, the use of phone class-conditional

posterior probabilities (posterior features) directly as fea-
tures has provided successful results in template-based
ASR systems. In this paper, motivated by the high qual-
ity of current text-to-speech systems and the robustness
of posterior features toward undesired variability, we in-
vestigate the use of synthetic speech to generate reference
templates. The use of synthetic speech in template-based
ASR not only allows to address the issue of in-domain
data collection but also the expansion of the vocabu-
lary. On 75- and 600-word task-independent and speaker-
independent setup of Phonebook corpus, we show the
feasibility of this approach by investigating different syn-
thetic voices produced by HTS-based synthesizer trained
on two different databases. Our study shows that syn-
thetic speech templates can yield performance compara-
ble to the natural speech templates, especially with syn-
thetic voices that have high intelligibility.
Index Terms: Speech recognition, template-based ap-
proach, posterior features, synthetic reference templates.

1. Introduction
In template-based Automatic Speech Recognition (ASR)
systems [1], each speech unit (e.g., word) is represented
by a set of reference templates. A template typically be-
ing a sequence of feature vectors for an utterance of the
speech unit. Each test utterance is first transformed into a
sequence of short-time spectral-based features and then
compared against reference templates, using Dynamic
Time Warping algorithm, to find the best match.

Recently, the use of phone class-conditional poste-
rior probabilities estimated by an MultiLayer Perceptron
(MLP) directly as speech features has been proposed
[2, 3]. We refer to these features as posterior features. It
was shown that, as a result of the training of the estima-
tor, posterior features are robust to undesired variability
and can generalize well, thus yielding significantly better
performance than standard spectral-based features using
a fewer number of templates.

One of the limitations of template-based ASR lies in

the collection of in-domain data as templates. The high
quality of the current Text-to-Speech (TTS) systems, to-
gether with the property of the MLP to generalize to un-
seen speech/condition [3], suggests that it could be pos-
sible to automatically produce reference templates, and
thus build more flexible template-based ASR systems.

Usually, TTS systems are trained using databases
recorded in controlled conditions (i.e. sound proof
rooms/recording studios) by a small number of profes-
sional speakers, and including large amount of phonet-
ically balanced speech data which is manually anno-
tated. As a consequence, the cost to build such corpora is
usually very high and only a limited number of voices
is available. On the other hand, previous works have
shown that speaker-adapted HMM-based speech synthe-
sis systems (HTS) are robust to non-ideal conditions,
such as various background noise, different microphones
and lack of phonetic balance [4]. This allows to use ASR
corpora to train TTS systems, thus providing the possibil-
ity of producing a large variety of good-quality synthetic
voices [5].

In this paper, we aim at investigating the use of syn-
thetic speech templates for template-based ASR, particu-
larly focussing on the use of synthetic voices trained with
different corpora. More precisely, we compare voices
trained using TTS corpora versus voices trained with
ASR corpora to investigate if and how much the training
database influences the ASR system when no adaptation
is performed.

Experiments on task-independent and speaker-
independent isolated word recognition using Phonebook
corpus with a small vocabulary show that synthetic
voices can be successfully used as reference templates,
provided that the voices have sufficiently good qual-
ity. The voices trained on a TTS corpus yield perfor-
mance slightly higher than the performance obtained us-
ing voices trained on an ASR corpus. In addition, we
found that average voices trained on the ASR corpus per-
form better than the voices adapted to a specific speaker.

The paper is organized as follows: we describe the
ASR framework using posterior features in Section 2; we
introduce and motivate the use of synthetic templates in



Section 3; we present the experimental setup and the re-
sults of the experiments in Sections 4 and 5, respectively;
finally we conclude the paper with summary and future
work in Section 6.

2. Posteriors template-based ASR
Formally, given a spectral-based feature vector, x, and
given a set of possible phoneme classes ck with k ∈
{1, 2, ...,K}, the posterior features vector y is given by
y = [P (c1|x), . . . , P (cK |x)]T = [y1, . . . , yK ]T. As
discrete distribution, the vector y has two properties:
a) yk ∈ [0, 1],∀k ∈ {1, 2, ...,K} and b)

∑K
k=1 yk = 1.

In a previous work [3], these features have been in-
vestigated in the context of template-based ASR, showing
that they generalize well to unseen data and yield better
systems than standard spectral-based features.

Figure 1 shows the framework of a template-based
ASR system using posterior features.

Figure 1: Framework of a template-based ASR using pos-
terior features

Features extraction: In this framework, the features are
extracted from the speech signal through two steps.
First, the speech signal is transformed into a sequence
of cepstral-based feature vectors. Then, each vector in
the sequence (along with a temporal context) is provided
as input to an estimator/classifier and transformed into
a posterior features vector. A comparison of different
posterior features estimators was performed in [3] and it
was shown that, irrespective of the estimator, posterior
features always yield better performance than spectral
features. Specifically, MLP was found to yield consis-
tently better systems.

Templates collection: In the training phase (dashed ar-
rows in Figure 1), a number of reference templates are
extracted from a database in the same domain as the test
data. The templates are transformed into a sequence of
posterior features and stored in memory.

Test phase: In the test phase (continuous arrows in Fig-
ure 1), a test word is first transformed into a sequence
of posterior features and then compared to each tem-
plate using the Dynamic Time Warping (DTW) algo-
rithm. The best matching template is provided as output
of the system.

DTW local scores: Taking into account the probabilis-
tic nature of posterior features, DTW algorithm can be
redefined using more suitable local distance measures
(local scores). In previous works [2, 3], local scores
such as Bhattacharyya distance, Kullback-Leibler diver-
gence, dot product, cosine angle were found to yield
significantly better performance when compared to Eu-
clidean distance. In this paper, we focus in particular
on a local score based on Kullback-Leibler divergence
and on dot product which were found to be the best per-
forming in terms of accuracy and the best performing
in terms of computational effort, respectively. Formally,
these local scores are defined as follow:

- weighted symmetric Kullback-Leibler divergence
(wSKL): In [2, 3], a local score based on Kullback-
Leibler divergence, namely weighted symmetric
Kullback-Leibler divergence, was found to yield the
best performance. Briefly, if y = [y1, . . . , yK ]T de-
notes the posterior feature vector that belongs to the
reference template and z = [z1, . . . , zK ]T denotes
the posterior feature vector that belongs to the test
template then wSKL is computed as:

wSKL(y, z) = wy ·KL(y, z) +wz ·RKL(y, z)
(1)

where,

KL(y, z) =

K∑
k=1

yk log
yk
zk

,

RKL(y, z) =

K∑
k=1

zk log
zk
yk

,

wy =
1

H(y)

( 1
H(y)

+ 1
H(z) )

, wz =
1

H(z)

( 1
H(y)

+ 1
H(z) )

H(y) is the entropy of y, and H(z) is the entropy of
z.

- Dot Product (dotProd): One way to compare two
feature vectors is to ask if the two feature vectors be-
long to the same class. This can be possibly achieved
by training an MLP with pair of feature vectors as
input and output label as same class or not. In a
recent work, it was shown that if such an MLP is
trained with mean square error criteria then the op-
timal output is the dot product (also referred to as
scalar product) of the associated pair of input vec-
tors [6]. Another interesting aspect of this measure is
that it requires a very low computational effort. For-
mally, given the posterior features vectors y and z,
then dotProd is computed as:

dotProd(y, z) = yT z =

K∑
k=1

yk · zk



3. Synthetic References, Posterior Features
and Template-based ASR

In the framework described in Figure 1, the templates
were extracted from data of the same domain as the test
data. In this section, we propose a framework that uses
templates which are domain-independent and are gener-
ated using a TTS system. This would eliminate the issues
related to in-domain data collection or vocabulary expan-
sion. The new framework is illustrated in Figure 2.

Figure 2: Framework of the template-based ASR using
posterior features and synthetic templates

The use of synthetic templates has been already sug-
gested in the past. In particular, in [7] the authors pro-
posed a recognition system in which a speech produc-
tion system (a rule-based TTS system) is used to gen-
erate a number of synthetic reference templates that are
matched to the input test utterance at spectral level. The
authors suggest several adaptation techniques to increase
the match between natural and synthetic voices, such as
speaker adaptation of the synthetic voice to the current
test speaker or length adaptation of the synthetic utter-
ance to the test utterance. However, the results of their
experiment were far from competitive with systems based
on natural speech templates. The failure of that work was
mainly ascribed to the low quality of the voices produced
by the rule-based TTS system and, thus, the lack of simi-
larity between synthetic and natural speech.

Recently, new models for TTS has been proposed [8]
and the quality of the synthetic voices has considerably
increased, being now comparable with natural speech es-
pecially in terms of intelligibility [5]. Moreover, the rep-
resentation of the speech signal in current TTS systems
usually includes also information about the spectral en-
velope of the speech signal [9]. On the other hand, it
has been shown that the MLP tends to learn informa-
tion about the spectral envelope of the speech signal [10].
This suggests that MLPs could estimate reliable poste-
rior features for synthetic speech as well. In addition, the
posterior features have been found to be robust to speaker
variability, thus dissimilarity between synthetic and natu-
ral speech could be effectively reduced when this features
are used, possibly eliminating the need for speaker adap-
tation.

Besides overcoming the problem with data collection,

one advantage in the use of synthetic speech templates
lies in the possibility of automatically producing varia-
tion in the speech. In ASR the use of multi-condition
data created, for example, by adding noise or collecting
data from different domains has been well explored. The
synthetic speech could be possibly used to systematically
add variation such as, hyper/hypo articulation, age or ac-
cents in the training data. In this direction, the use of
synthetic speech could also be exploited to explore the
template space.

In the following section, we present the experimental
setup and details about the different components of the
system.

4. Experimental Setup
We perform speaker-independent task-independent iso-
lated word recognition on Phonebook speech corpus.
This corpus contains US English read telephone speech.
The test set consists of 8 subsets of utterances, each con-
taining 75 words uttered on average by 11 or 12 speakers
once, for a total of 6598 word samples. For more details
about the composition of this dataset, the reader may re-
fer to [11].

We perform the experiments on two different tasks:

- 75-word task: the recognition is performed on each
of the 8 subset (75-word lexicon each) separately
and the average accuracy is presented as result.

- 600-word task: the 8 test subsets are merged to
setup a task with 600 words lexicon.

In this work, we use exactly the same framework as
in [2, 3], where one random utterance of each word was
extracted from the test set and used as natural speech ref-
erence template 1. There are two natural voices, namely,
one female (denoted as natVoice1) and one male (denoted
as natVoice2).

Text-To-Speech system
The synthetic reference templates were generated us-
ing Festival Speech Synthesis System [12]. We
use off-the-shelf HMM-based Speech Synthesis Sys-
tem (HTS) voices, trained using the CMU ARCTIC
databases [13] or Wall Street Journal (WSJ) database:

- CMU ARCTIC databases consist of phonetically
balanced sentences selected from out-of-copyright
texts recorded using a microphone in a sound proof
room. This databases are specifically designed for
speech synthesis. Among the different voices avail-
able, we use two US English male voices (Bdl and
Rms) and two US English female voices (Slt and
Clb).

1Our experiments show that there is no statistical significant dif-
ference in the performance when a different random selection of such
utterances is made.



- WSJ database consists of read speech with texts
drawn from a machine-readable corpus of Wall
Street Journal news text. This database was origi-
nally built for large-vocabulary continuous speech
recognition systems. In a recent work [5], it was
shown that speaker-adaptive HMM-based speech
synthesis is robust to non-ideal speech conditions
typical of ASR corpora (such as, varying micro-
phones, presence of background noise, lack of pho-
netic balance). This allows the use of ASR corpora
to build good-quality synthetic voices. In the ex-
periments we use four voices: two average voices
(one male, named 59males, and one female, named
60females), and two synthetic voices corresponding
to the male speaker 001 and the female speaker 002.

For more details about the training system the reader
may refer to [14, 15]. In these experiments, each of
the synthetic voices has been used to produce one ut-
terance of each word in the dictionary.

Posterior features estimation
We estimate posterior features using the MLP that
yielded the best system in a previous work [3]. This
MLP was trained with 232 hours of conversational
telephone speech. The input to the MLP is a vector of
39-dimensional PLP features (c0-c12+∆+∆∆) along
with a temporal context of 90ms. The MLP has 5000
hidden units and 45 output units, each corresponding
to a context-independent phoneme.

In the case of synthetic speech, the speech was down
sampled from 16 kHz to 8 kHz and posterior features
were extracted without performing any kind of adapta-
tion on the MLP.

Local Scores
In this work, we investigate the two local scores de-
scribed earlier in Section 2. In previous studies [2, 3],
wSKL, defined earlier in Equation (1), was found to
yield the best system, whereas dotProd, defined ear-
lier in Equation (2), was found to be faster than wSKL
but providing somewhat lower results. We investigate
both local scores for natural and synthetic speech.

5. Results and Discussion
In Figures 3a to 3d, we show the results obtained with
both natural and synthetic speech templates for 75- and
600-word tasks using wSKL or dotProd as local scores.
The performances are expressed in terms of word accu-
racy. Natural denotes the system with natural speech
templates, Synthetic (ARCTIC) denotes the system with
synthetic voices trained on ARCTIC databases, and Syn-
thetic (WSJ) denotes the system with synthetic voices
trained on WSJ database.

Using wSKL as local score, the best performance
obtained using natural templates are 98.8% and 94.8% on

75- and 600-word task respectively. Using ARCTIC syn-
thetic voices, the best performance are 98.2% and 94.7%
on 75- and 600-word tasks respectively. Using WSJ syn-
thetic voices, the best performance are 97.6% and 93.3%
on 75- and 600-word tasks respectively.

Using dotProd as local score, the best performance
obtained using natural templates are 97.9% and 92.2% on
75- and 600-word task respectively. Using ARCTIC syn-
thetic voices, the best performance are 97.3% and 92.1%
on 75- and 600-word task respectively. Using WSJ syn-
thetic voices, the best performance are 96.5% and 90.5%
on 75- and 600-word task respectively.

Similarly to what observed already on natural data,
the results clearly confirm that wSKL provides the best
performance for all tasks. While on 75-word task the
performance using dotProd is comparable to the use of
wSKL, on 600-word task the difference in the perfor-
mance is more evident. However, for all the tasks the
real-time factor using dotProd as local score is less than
half the real-time factor using wSKL.

Despite the differences between the database used in
this ASR experiments and those used in the TTS training,
it can be observed that the synthetic voices yield perfor-
mance comparable to the use of natural in-domain voices.
In our experiments we observed that synthetic voices ex-
hibit more variabilities in terms of performance compared
to the use of natural speech. This could be related to the
different quality of the synthetic voices. For example,
listening tests revealed that the synthetic voice 001 has a
lower quality than the voice 59males and this corresponds
to lower performance in the experiments. Similarly, the
results obtained using ARCTIC voices correlate well with
the subjective quality evaluations of these voices reported
in [17], especially in terms of intelligibility.

An error analysis of the ASR output indicated an in-
herent limitation that the TTS system could introduce in
this ASR approach. Specifically, we found that the pro-
nunciation of some words in the natural speech differ
from the pronunciation in the synthesized speech. In par-
ticular, we observed two different cases. In one case, the
phonetic transcription of the synthesizer does not match
with the phonetic transcription of the natural speech. For
example, using any of the synthetic voices, the word
“gabardines” is transcribed by the TTS as /"gæb@daI:nz/
whereas it is pronounced as /"gæb@dI:nz/ in the natural
speech. In the other case, the phonetic transcription of
the synthesizer corresponds to the phonetic transcription
of the natural speech, but the synthesis process would
eventually produce a speech sample with a slightly differ-
ent pronunciation. For example, the word “externalize” is
phonetically transcribed by the TTS as /Ik"st3:n@laIz/ (cor-
responding to the pronunciation of the natural speech),
but the synthesized speech sounds rather like /Ik"st3:n@lIz/
when the WSJ voice 001 is used (likely due to the low in-
telligibility of this voice).



(a) Word accuracy on 75-word tasks for different voices using wSKL
as local score. The hybrid HMM/MLP system on this task yields 98.8%
word accuracy [16]

(b) Word accuracy on 75-word tasks for different voices using dotProd
as local score.

(c) Word accuracy on 600-word tasks for different voices using wSKL
as local score. The hybrid HMM/MLP system on this task yields 96.0%
word accuracy [16]

(d) Word accuracy on 600-word tasks for different voices using
dotProd as local score.

Figure 3: Word accuracy on 75- and 600-word tasks using different voices and local scores.

From the results, it can be observed that ARCTIC
voices provide better results than WSJ voices. This is
probably related to the difference of the quality of the
original training data for the TTS. As already mentioned
in Section 4, the ARCTIC databases were recorded in
a sound proof room and are phonetically well balanced,
whereas the recording condition for WSJ was not con-
sistent and presented a variety of environments and mi-
crophones. Concerning the voices trained on WSJ, it is
interesting to notice that the average voices perform al-
ways better than the voices adapted to a specific speaker.
This can be attributed to a quality reduction of synthetic
speech that can be observed during the voice adaptation
process [5]. This suggests that the use of an average voice
might be sufficient in the present speech recognition ap-
proach, eliminating the need for speaker adaptation of the
synthetic voices.

6. Summary

In this paper, we investigated the use of synthetic refer-
ences for template-based ASR using posterior features.
Our results show that the robustness of posterior features,
together with the good quality of current TTS systems,
allow to build flexible template-based ASR systems. Our
studies show that using synthetic speech, without any
adaptation of the posterior features estimator (trained on
natural speech), we can achieve results comparable to the
use of natural speech templates, both when the TTS sys-
tem is trained on TTS corpora or ASR corpora. However,
the quality of the synthetic speech influence the perfor-
mance of the ASR system. Moreover, we found that aver-
age voices trained on the ASR corpus perform better than
the speaker-adapted voices, suggesting that there may be
no need to perform speaker adaptation for this task. We
intend to further verify this on average voices trained on
other databases.

In addition, in our future work we will investigate



possible adaptation techniques for the MLP estimator in
order to improve the quality of the posterior features also
in case of low quality synthetic voices. In particular, we
could use the hierarchical MLP-based task-adaptation ap-
proach proposed in [16], where a second MLP, trained
on top of the first MLP, has the ability to learn con-
fusions present at the output of the first MLP and also
learn phonotactic constraints. The second MLP could be
trained using only synthetic data or a mix of both natural
and synthetic data.
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