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Abstract

In HMM-based speech synthesis, it is important to cor-
rectly model duration because it has a significant effect
on the perceptual quality of speech, such as rhythm. For
this reason, hidden semi-Markov model (HSMM) is com-
monly used to explicitly model duration instead of us-
ing the implicit state duration model of HMM through its
transition probabilities. The cost of using HSMM to im-
prove duration modelling is the increase in computational
complexity of the parameter re-estimation algorithms and
duration clustering using contextual features. This paper
proposes to use an alternative explicit duration modelling
approach to HSMM which is a hybrid of HMM and mul-
tilayer perceptron (MLP). The HMM is initially used for
state-level phone alignment, in order to obtain state dura-
tions of HMM for each phone. In the second stage, dura-
tion modelling is done using an MLP where the inputs are
contextual features and the output units are the state dura-
tions. Both objective and perceptual evaluations showed
that the proposed duration modelling method improved
the prediction of duration and the perceptual quality of
synthetic speech as compared with HSMM.
Index Terms: duration modelling, HMM-based TTS,
hidden Markov model, multilayer perceptron

1. Introduction
HMM-based speech synthesis is the parametric method
that produces the highest quality and offers great para-
metric flexibility for transforming voice characteristics,
e.g. by using adaptation techniques [1, 2]. Duration is an
important aspect of speech related to prosody, which has
a great effect on the perceptual quality and expressive-
ness of synthetic speech. Furthermore, in some languages
like Finish, the duration of phonemes conveys meaning,
e.g short and long phonemes convey different meanings.
Thus, errors in duration prediction can change the mean-
ing of a word [3].

The duration of speech can be implicitly modelled by
the transition probabilities between HMM states. How-
ever, the distribution that results from this implicit mod-
elling is exponential which is not appropriate for mod-

elling the duration of phones as the duration of phones are
generally normally distributed [4]. In order to overcome
this problem in statistical speech synthesis, duration is
explicitly modelled by using HSMM [5]. In this method,
state duration is usually modelled using single Gaussian
distributions and the duration models are clustered and
tied using decision trees to deal with data scarcity as well
as the problem of estimation of the duration of phone con-
texts not seen during training. Since HSMM is used as
a generative model in speech synthesis, the duration of
synthetic speech is represented by the number of speech
frames generated from each state, based on the state du-
ration distributions.

The motivation of this work is the improvement of the
accuracy of duration prediction in HMM-based speech
synthesis in order to improve the perceptual quality of
synthetic speech. The approach presented is a develop-
ment of a previous work in [6] where duration is ex-
plicitly modelled using continuous HMM. In the previ-
ous work, a decision tree is used to predict the dura-
tions of models not seen during training while in the
present work, an MLP is used. The proposed duration
modelling approach is a combination of HMM and MLP.
HMMs are used in a first stage to obtain initial estimates
of phone durations. In this process, monophone HMMs
are trained using parameters of the speech spectrum, fol-
lowed by state-level alignment of the training data. State
durations are estimated from the alignment as the num-
ber of observations assigned to each HMM state. In a
second stage, duration is modelled by training an MLP
using phonetic, prosodic and articulatory features from
context-dependent phone labels. The output units of the
MLP represent the state durations (number of frames) ob-
tained in the first stage.

The next section gives an overview of the baseline
explicit duration modelling method using HSMM. Sec-
tion 3 describes the proposed method for explicit dura-
tion modelling using a hybrid HMM-MLP method. In
Section 4, this proposed approach is compared with the
baseline method in terms of both an objective and a sub-
jective evaluation. Finally, conclusions are presented in
Section 5.



2. Explicit duration modelling using
HSMM

In HSMM, the state duration is modelled with an n
stream Gaussian distribution, where n represents the
number of states in the HSMM. Figure 1 shows a HSMM
with 5 states. In HSMM, pj(d) (the state duration distri-
bution for state j) is explicitly modelled with a Gaussian
distribution. d is the duration of each state and bj(o) is the
state emission probability for state j, while o is the obser-
vation. During training, the duration and model param-
eters are re-estimated using algorithms such as Baum-
Welch.

Figure 1: A 5-state HSMM with explicit duration density
represented by pj(d).

Due to the large number of context-dependent factors,
that are necessary to take into account in modelling du-
ration, the parameters of the duration distributions might
not be robustly estimated for models with small number
of occurrences in the training corpus. Furthermore, du-
ration models for phone contexts not seen in the train-
ing corpus need to be estimated from context-dependent
models obtained during training. These problems are
usually addressed using decision trees. In order to cluster
and tie the parameters of state distributions, the duration
distributions of all streams are entered at the root node
of a tree. Then phonetic and prosodic context questions
are asked at each node and depending on the answers, the
states are split using minimum descriptive length (MDL)
criterion [7]. The split operation continues until all ques-
tions are asked. In the lower part of Figure 2, the leaf
nodes contains four clusters (A-D) whereby each cluster
is tied. Clusters that are tied share common parameters
of the duration distributions, namely, the means and vari-
ances. For the estimation of the duration distributions of
contexts not seen during training at the synthesis stage,
the decision tree is traversed from the root to the leaf
node.

The upper part of Figure 2 shows an example of a
phone model and the respective context-dependent la-
bel comprising of phonetic and prosodic features (rep-
resented by symbols after the symbol ‘@’) and the lower
part shows clustering and tying of this model using deci-
sion tree. In this example, the phonetic context question
‘C-Central Fricative’ asks if the current phone belongs to
central fricative class and the prosodic context questions
‘L-Syl Stress’ and ‘C-Syl Stress’ deal with stress on the
previous and current syllable, respectively. For example,

in the HTS speech synthesis (version 2.1) system for En-
glish demo [8], each phone has 53 phonetic and prosodic
features which deal with phone identity, syllable, words,
parts-of-speech, phrase and utterance information.

Figure 2: Illustration of decision tree-based clustering
for context-dependent label of HSMM (top) and duration
modelling (bottom).

3. Duration modelling using a hybrid
HMM-MLP

This section describes the proposed explicit duration
modelling method using a hybrid HMM-MLP. MLP has
been previously used to model segmental durations in
speech synthesis, e.g. [9, 10]. The approach presented
in this paper is different from these works in that it is
applied to HMM-based speech synthesis. There are two
training stages involved, namely, the training of the align-
ment model followed by explicit duration modelling as
shown in Figure 3. These two parts are described in the
following sections.

3.1. Alignment model

Phonetic alignment is the process of finding the phone
boundaries for a speech segment given the phone se-
quence for that segment. The technique commonly used
for automatic phonetic alignment is the Viterbi algorithm.
It determines the best state sequence, given a phone se-
quence and a sequence of speech frames. In this work,
the duration of each state which is given in number of
frames is obtained by dividing the duration, in millisec-
onds, by the frame rate.

3.2. Explicit duration modelling using MLP

3.2.1. MLP architecture

MLP is made of simple processing units which commu-
nicate by sending signals to each other over a large num-



Figure 3: Training stages of explicit duration model using
a hybrid HMM-MLP.

ber of weighted connections [11]. MLP has at least two
layers of processing units. The most common in speech
processing is a two-layer perceptron which has an input
layer with non-processing units and both a hidden and
output layers with processing units. The output layer pro-
cesses the signal propagated from the input layer, through
the hidden layer, and outputs the result which may be fur-
ther processed depending on the application (e.g. scaling,
conversion, etc.).

The MLP architecture used in this work to predict
state durations is shown in Figure 4. The five units in the
output layers ( dur s1, dur s2, dur s3, dur s4 and dur s5),
represent the state durations for states 1 to 5 (for HMMs
with 5 states) respectively, obtained from the alignment
stage. The tanh and linear activation functions are used
in the hidden and output units respectively. The activation
function scales the state durations to be within a given
range. The tanh function scales the input to be between
−1 and +1 and the scaling factor of the linear function
was set equal to 1 (the input and output values are the
same). The input features F1− F128 represent the pho-
netic, prosodic and articulatory features extracted from
each phone. These features are described in the next sec-
tion

3.2.2. Phone context features

The phone features used as input of MLP comprise the
original 53 set of features used by the baseline speech
synthesis system described in Section 2 plus a set of 25
articulatory features. The latter set of features is used for
the previous, current and next phone, giving a total of 128
features for each phone. Symbolic features like parts-of-
speech and phone identity are represented with distinct
numerical values. For example, parts-of-speech feature
with symbolic values {aux, content, det, pps} are rep-
resented by {1, 2, 3, 4}. The set of articulatory features
of Table 1 was originally used in [12] for speech recog-
nition and is used in this work. The articulatory features

are binary, for example, if a phone is a fricative, the value
is 1, otherwise the value is 0.

Articulatory features
approximant, fricative, glottal, nasal
retroflex, stop, vocalic, voiced
alveolar, dental, labial, palatal
palveolar, velar
back, central, front
high, low, mid, semihi, semilo
round, static, tense

Table 1: List of articulatory features used as input fea-
tures of the MLP.

Figure 4: Architecture for training MLP to predict state
durations.

3.2.3. Speaking rate control

Similarly to HSMM, the speaking rate can also be con-
trolled in MLP. This is done by scaling the MLP weights.
There are two sets of weight matrices, namely, W1 of di-
mension nin x nhid and W2 of dimension nhid x nout.
Where nin is the number of input features to the MLP,
nhid is the number of hidden units and nout is the num-
ber of units in the output layer. The speaking rate can be
controlled as follows:

Ŵ1 = βW1, (1)

Ŵ2 = βW2, (2)

where Ŵ1 and Ŵ2 are the transformed weight matrices
and β is a positive scaling factor. Fast rate is achieved
when β is less than 1 and slow rate is achieved when β is
greater than 1.

Figure 5 illustrates the prediction of duration using a
two-layer MLP with one unit in the hidden and output



layers. x represents the input duration while w1 ∈ W1

represents the weight from the input to the hidden layer
and w2 ∈ W2 represents the weight from the hidden to
the output layer. The activation functions used in the hid-
den and output layers are f1(a) (tanh) and f2(a) (which
is linear) respectively while a represents the activation.
The predicted duration y is determined as follows:

y = w2

(
ew1x − e−w1x

ew1x + e−w1x

)
, (3)

while the speaking rate can be controlled, during synthe-
sis, as follows:

ŷ = ŵ2

(
eŵ1x − e−ŵ1x

eŵ1x + e−ŵ1x

)
, (4)

ŷ = βw2

(
eβw1x − e−βw1x

eβw1x + e−βw1x

)
. (5)

This is illustrated in Figure 3.2.3 for x = 2, w1 = 3
and w2 = 2. The evaluation of speaking rate control is
beyond the scope of this work.

Figure 5: An illustration of duration prediction in MLP.

Figure 6: An illustration of speaking rate control in MLP.

4. Evaluation of duration modelling in
HMM-based speech synthesis

Three versions of HMM-based speech synthesisers are
used in these experiments which differ in the method for
modelling duration. The baseline system uses the HSMM
as described in Section 2, whereas the second system uses
the proposed HMM-MLP approach presented in Section
3. The third system is the baseline system which uses the
natural durations of the speech.

4.1. Speech corpus

The RMS voice of CMU ARCTIC corpus [13] of read
speech was used for training of acoustic models as well
as testing. The corpus was divided into a training, test and
development set composed of 1030, 82 and 20 sentences
respectively. The development set was used to choose the
optimum number of hidden units of the MLP.

4.2. HSMM-based speech synthesiser

4.2.1. Analysis

The F0 parameter was estimated using the implementa-
tion of the RAPT algorithm [14] of the Entropic Speech
Tools (ESPS). Besides the F0, the spectral envelope of
the speech signal and the aperiodicity spectrum for each
frame was estimated using the STRAIGHT method [15].

4.2.2. Statistical modelling

The statistical modelling and parameter generation were
implemented using the HTS toolkit version 2.1 [16]. The
parameters used were the 24th order mel-cepstrum, F0
and five aperiodicity parameters, with their delta and
delta-delta features. HSMM with three streams were used
for statistical modelling of the F0, aperiodicity and spec-
trum parameters respectively. During HSMM training,
each stream for spectrum, F0 and aperiodicity was clus-
tered using different decision trees to deal with data spar-
sity as well as to predict unseen contexts. The number of
leaf nodes of the decision tree for duration was 492.

4.2.3. Synthesis

During synthesis, speech parameters were generated by
the HSMMs from the sentences in the test set and then
the speech waveform was generated from the parameters
using the STRAIGHT vocoder. Speech was also synthe-
sised from the generated parameters but imposing the du-
rations from the proposed approach and durations mea-
sured on recorded speech.

4.3. Duration modelling using HMM-MLP

The number of units in the hidden layer of the MLP was
determined experimentally on the development set. Fig-
ure 7 shows the variation of the Root Mean Squared Error
(RMSE) of phone duration averaged over all phones, in
milliseconds, relatively to the number of units in the hid-
den layer on the development set. RMSE is defined as:

RMSE =

√√√√ 1
n̂

n̂∑
i=1

x̂2, (6)

where n̂ is the number of occurrences of each phone in
the train, test or development set respectively and x̂ is the
difference between the reference and predicted durations.



The reference durations were obtained from the phone
annotations. The optimal number of units in the hidden
state was 75.

An MLP with 128, 75 and 5 units in the input, hid-
den and output layer respectively, was trained using an
implementation of the backpropagation algorithm [17].

Figure 7: Variation of mean value of RMSE for all phones
as a function of the the number of units in the hidden
layer.

4.4. Objective evaluation

4.4.1. Measurement

The criterion used for the objective evaluation is the
RMSE between the predicted and reference (measured on
recorded speech) phone durations given by (6).

4.4.2. Results

Figure 8 shows the RMSE in milliseconds (ms) obtained
for the phones in the test set. Figure 9 shows the mean
RMSE for all the phones in the train, test and develop-
ment sets respectively. The latter shows that the proposed
system obtained lower mean RMSE for the train, test and
development sets.

Also, some phones are better modelled with MLP,
e.g. the phones ‘ey’, ‘uh’ and ‘uw’. The phones with
the best and worst performance are ‘ax’ and ‘ng’ respec-
tively in both systems. Furthermore, the proposed system
performed better than the baseline in most of the phones,
while the proposed system poorly performed on the ‘aw’
phone.

4.5. Subjective evaluation

The effect of using the proposed duration model on the
perceptual quality of synthetic speech was evaluated by
conducting an ABX forced-choice test.

15 sentences were randomly chosen from the test

Figure 8: RMSE values obtained for the baseline
(HSMM) and proposed (HMM-MLP) duration models
for the phones in the test set.

set. Each sentence was synthesised using the system de-
scribed in Section 4.2 and durations obtained from the
three methods respectively: baseline HSMM, proposed
HMM-MLP and natural durations (measured on recorded
speech).

11 subjects participated in the evaluation, 6 of whom
were native speakers of English. They were asked to se-
lect the sample (A or B) of each pair (included speech
synthesised using HSMM and HMM-MLP respectively)
that sounded more closely to the reference speech in
terms of naturalness. They were also asked to choose
the third option ’X’ when they did not perceive any dif-

Figure 9: RMSE of phone duration averaged over all
phones for the baseline and proposed duration models in
the train, test and development sets respectively.



ference between the two samples.

Figure 10: Preference rates for the baseline and proposed
approaches.

4.5.1. Results

Figure 10 shows the preference rates obtained for the sys-
tems using the baseline and proposed duration modelling
methods respectively. The preference rate shows that the
proposed system synthesised speech that more closely re-
sembled the reference utterance than the baseline system.
Furthermore, a Friedman test was performed on the re-
sults of the perceptual evaluation to determine the sta-
tistical significance and the mean ranks for the baseline,
proposed and “no preference” were 1.1, 2.4 and 2.5 re-
spectively with a p− value < 0.05.

5. Conclusions
This paper presented a hybrid HMM-MLP duration mod-
elling technique for HMM-based speech synthesis. In
this approach, HMM firstly is used to obtain initial phone
durations by state-level phone alignment. In the second
stage MLP is used to explicitly model state duration.

An objective experiment to evaluate the hybrid
HMM-MLP method for duration modelling in HMM-
based speech synthesis showed that this method generally
modelled more accurately phone durations as compared
with a baseline system using HSMM. Furthermore, a per-
ceptual evaluation showed that the proposed durational
modelling method synthesised speech that more closely
resembled the natural speech than the baseline method.

Future work will study in more details the duration
modelling using HMM-MLP for the phones that obtained
poor results in the objective evaluation. Also the HSMM
and HMM-MLP methods will be compared in terms of
speech rate transformation and for other languages and
voices.
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