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Abstract
Human speech production is often described as an optimi-

sation process, which tends to maximise the effectiveness of the
communication process minimising the effort involved in the
production.

The aim of this paper is to investigate this highly com-
plex problem with two dimensionally reduced spaces corre-
sponding to different computational models. Since the high-
dimensional parameter space which usually describes such a
problem is often an issue in the optimal-behaviour computation,
two-dimensional models are proposed. The first one analyses
the best trajectories visiting the proximity of a set of randomly
chosen points. The second one explores the F1-F2 vowel space
trying to maximise a set of likelihood functions describing some
human production characteristics.

Even though such models need further development, some
preliminary correspondences can be observed with some of
the elements described in the most popular theories for human
speech production. For example, the distance between close
competitors directly influences the best trajectory computation
and, therefore, the effort needed to achieve the desired tasks.
The trajectory planning is also controlled by the degree of mo-
tivation selected to achieve the desired accuracy: the higher the
motivation, the more the target must be addressed.
Index Terms: human speech production model, reactive pro-
duction model, hyper/hypo-articulation model, optimisation
strategies, trajectory planning.

1. Introduction
Human talkers continuously adjust their speech production
while they are speaking. One of the first researchers who ob-
served such behaviour was Lombard [1] almost a century ago
and, after that study, several other theories have been proposed.
Among others, Lindblom’s H&H (hypo-hyper) theory [2] af-
firms that such modifications could be seen as a balancing pro-
cess in which the talker tries to maximise the success of his
communication minimising the effort involved in production.

The hyper/hypo-articulated speech is intrinsically related to
the effort that the talker puts in his speech production and it is
influenced by his motivation or by the contingencies which may
appear in the space. E. g. an utterance can be hyper-articulated
because the talker autonomously decides to make his production
extremely clear, because the environment forces him to com-
pensate, or because it is imperative to avoid confusion between
phonologically similar words.

Principles ruling such an optimisation are not completely
established. It might be the result of the continuous speech
monitoring by the talker in order to keep it as close as pos-
sible to a desired phonetic plan [3]. The control loop could

be done assessing the acoustic outcome only, or with the so-
matosensory system also to achieve prompter reactions to sud-
den changes [4]. This process is often described as an attempt
to satisfy the listener’s needs modelled inside the talker’s mind
by a listener’s emulation [5]. The speech modification might be
modelled as the result of a previously learned modification of
the speech quality (e.g. speech energy reallocation in the time
and frequency domain [6]) or, eventually, the product of the en-
hancement/reduction of the acoustic distance between compet-
ing phones in order to minimise possible misunderstandings. In
previous experiments [7, 8, 9], it was shown that a data-driven
linear transformation which controls such phonetic contrast can
be used to tune the degree of synthesised speech intelligibility.
These results were found compatible with what most humans
do in adverse condition [10].

In order to establish some principles on how humans con-
trol speech production, the use of proper computational models
might be useful. When parametric representation of speech is
given, multidimensional acoustic space is also defined and ut-
terances can be modelled as the parameter vector temporal evo-
lution. If a likelihood function is also defined for every point
in such space, speech production turns into an optimisation pro-
cess which aims to create the trajectory which navigates through
the most likely points. It can be assumed that several things in-
fluence such function: sequence of targets, trajectory evolution,
competing-target density, possible external disturbances, etc.

Though, handling the great number of variables involved
in parametric speech representation is a overwhelming prob-
lem in the investigation of optimal behaviour. E.g. a standard
HMM-based speech synthesiser could have a vector dimension
of about 200 elements. In such highly complex spaces, a sim-
ple visual representation of the problem, which can be crucial
to assess the different strategies, is highly unlikely.

Motivated by these needs, two dimensionally-reduced
spaces are introduced to be used as frameworks to test different
optimal-trajectory search strategies. The future goal is to extend
them to the original multi-dimensional space. Even though they
are just simple descriptive models, their observation might, by
some extent, establish some fundamental principles still valid
in the high dimensional problem. Some minimum assumptions
are made in order to guarantee a certain degree of connection to
the real problem while complexity is reduced.

• A visual intuitive representation is helpful, therefore a
two-dimensional space should be chosen.

• The main goal in this trajectory planning should be to
visit a target sequence in a precise order.

• The simplified space should be defined by a set of points
to identify targets and by some likelihood functions to
describe the area between them.
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Figure 1: Example of two-dimensional space with 11 random
points. The SZs are displayed with dash-lined circles. Four
targets (ph1..4) and neutral position, ph0, are also shown.

• The optimal trajectory might vary at every step as func-
tion of current position and of surrounding local space.

• The trajectory-evolution speed should not be fixed, but
it should be dependant on the intensity of the stimulus:
i.e. the farther the trajectory is from the target, the more
urgent the movement towards the it should be[11].

In the following sections, two models, which adopt these
guidelines, are proposed. Being intuitive and flexible spaces,
many different strategies to navigate them can be used and some
hints can be extended to real acoustic space.

2. First space: randomly-chosen points
As mentioned, reduction from a high-dimensional space is the
most important simplification needed in order to better handle
optimal trajectory computation problem. Even if this space have
a weak connection to the original acoustic space, it roughly re-
minds of vowel space. Anyway, in this model more empha-
sis was put on the navigation techniques of a two-dimensional
space rather than on its relationship with the original acoustic
space. Hence, the space is defined by a set of randomly-chosen
points, {pn}, n = 1..N . Some of them are named as targets,
{phl}, l = 1..L, while the N − L inactive points represent
obstacles for the trajectory, {xk}, k = 1..T , to avoid.

Trajectory goal is to visit every target in the right order. At
each step, one target only is active and xk needs to go closer to
it than to any other surrounding point in order to label current
target as visited. Hence, a circular area around each point pn

is defined. It is named Safe Zone for pn, or SZ(pn) because,
when the trajectory is within this area, the related point, pn, can
be safely considered as visited. In an ideal vowel space, all the
points in that area can be thought as set of recognisable realisa-
tions of the phone pn. SZ(pn) radius is different for each point
and it is defined as half of the distance between pn and the clos-
est among the other points which are also called competitors.
An example of such space can be found in Figure 1.

The resulting trajectory is influenced by a weighting fac-
tor which controls the SZ size. This controlling factor can be
interpreted as a measurement of the motivation involved in the

creation of the trajectory: i.e. how much the system allows for
mistakes among competitors. The number of steps needed by
the system to complete the path is therefore a direct measure-
ment of this effort.

At the k-th step, one target only, phl, can be active. All
other positions consequently turn into competitors. The visiting
order is also important, therefore a target switching expression
is chosen to decide whether to switch the active target:

phk =


ph0 k ≤ 0
phl if phk−1 = phl and xk 6∈ SZphl
phl+1 if phk−1 = phl and xk ∈ SZphl
ph0 k ≥ T

(1)

where ph0 represents a neutral position and l is the target index.
Two different strategies were tested to update the trajectory

in this space. The first and simplest one aims to find the shortest
path which visits each target. The second one forces the trajec-
tory also to avoid competing SZs.

2.1. Minimising the distance to target

Minimising the distance between xk and target SZ is the first
criterion used to compute the desired trajectory.

The resulting trajectory, {xk}, is composed by straight
lines connecting the target SZs. Its evolution is described by
the following equation

xk+1 = xk + v(dk) ·∆xph
k (2)

where ∆xph
k = (phk − xk) is the vector identifying the tra-

jectory direction. The trajectory speed, v(.), is function of the
distance to target, dk = ‖phk − xk‖2. This relationship takes
inspiration from Piron’s law [12], which states that mean human
response time to stimulus are quicker when this is stronger. The
law can be expressed by an exponential function. Considering
the distance to target can be the stimulus, the speed function can
be expressed by

v(dk) = a1 · e
(
dk+

b1·b2
b3

)2

(3)

where a1, b1, b2, and b3 are empirical constants. Example of
resulting trajectories are displayed in Figure 2.

In Figure 2a, Figure 2b and Figure 2c, the SZs have dif-
ferent sizes depending on the applied scaling factors. As al-
ready mentioned, this value is related to the effort involved in
the trajectory creation. High motivation implies that the system
is making the effort to be more accurate in visiting targets and
this influences the correspondent SZ sizes.

This strategy represents a trajectory-computing algorithm
controlled by an important factor in speech production such as
motivation, and it has clearly issues related to its simplicity.
E.g. nothing prevents xk to go inside other-point SZs while
it is moving towards the target. This means that some points
can be marked as visited even though they are not targets and
the system creates a different path from the desired one.

2.2. Maximising the distance from competitors

Since the previous strategy often creates trajectories which go
into competitor SZs before ending in the right target one, further
constraints are needed.

A correction factor, A(θk), is therefore applied to the di-
rection vector in (2). The equation describing the evolution of
the model becomes

xk+1 =

{
xk + v(dk)∆xph

k if xk+1 6⊂ SZphj 6=k

xk + v(dk)A(θk)∆xph
k if xk+1 ⊂ SZphj 6=k

(4)
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Effort (n. of steps) = 115

(a) Low motivation
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(b) Medium motivation
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(c) High motivation

Figure 2: Trajectories with different degrees of motivation to
reach the same SZ(ph1..4) of Figure 1 through the shortest path.
Note that SZs are here scaled according motivation.

where ∆xph
k and v(dk) are as per (2) and (3). A(θk) is the

matrix representing the a θk-degree rotation, θk ∈ [0, 2π]. Ex-
amples of such trajectories are displayed in Figure 3.

In this case, the motivation factor controls the target SZ
sizes as in par. 2.1 and the competitor SZ sizes with the in-
verse of its value. This means that the higher the motivation is,
the smaller the target SZ is and the bigger the competitor SZs to
avoid are (see Figure 3c).

This strategy is more sophisticated than the previous one
and it shows the importance of controlling the distance from
competitors in order to minimise false target recognition.

Nonetheless, it still has limitations. One of these stands
in the binary decision function deciding whether the target phl

was visited.

3. Second space: the vowel space
The previous model is clearly a quite drastic simplification
which has weak relationship to some acoustic representation of
speech. A further step towards the real problem is hence in-
troduced. This evolution is inspired by the affinity between the
previous space and one of the most common vowel parametrical
space, the F1-F2 chart.

The points {pn} which define such two-dimensional space
are chosen to be the mean F1-F2 values extracted from the vow-
els in the CMU-arctic SLT corpus (American English female
voice). These values, µpn

, along with relative variances, σpn ,
are used to define some Gaussian mixture functions, which rep-
resent a statistical description of the likelihood of being close to
a vowel-formant mean value, see Figure 4. This function sub-
stitutes the previous SZ-based criterion.
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(a) Low motivation
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(b) Medium motivation
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Figure 3: Trajectory with different degrees of motivation to
reach the same SZ(ph1..4) of Figure 1 by maximising the dis-
tance from competitors. Note that circles here show the mini-
mum distance from competitors that should be guaranteed.

The {phl} targets are the subset of vowels to be pro-
nounced.

3.1. Optimal trajectory computation

Inspired by some state-of-the-art strategies adopted for the tra-
jectory planning in physical environments [13], a combination
of different target functions can be considered to compute the
optimal trajectory.

Given a set of target vowels, ph = {phl}, the optimal tra-
jectory, x′, results from maximising the following equation

x′ = arg max
x

G(x, ph) (5)

with G(x, ph) which depends on the current position and the
target sequence. It can be expressed by the following sum of
weighted functions

G(x, ph) = c1 ·G1(x, ph)+c2 ·G2(x)+c3 ·G3(x, ph) (6)

where {cj} > 0 are the parameters to control the motivation
associated to the system, and the {Gj} functions are specified
as in the following paragraphs.

A target is assumed to be visited when current trajectory
xk reach a position which maximises G(x, ph) for the related
target. Although (5) and (6) are quite simple, they are very
effective to control the behaviour of this formant generator.

Evolution of the target sequence is also fundamentals. Ex-
tending the principles of (1) in this space, phk can be expressed
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Figure 4: Example of F1-F2 vowel space representing 11 En-
glish vowels. All of them are plotted to have same likelihood.
Four targets (ph1..4) along with the neutral position ph0 are
also shown. Red areas have the higher likelihood. Phone la-
bels are displayed with the ‘CMU Pronouncing Phoneme Set’
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)

as

phk =


ph0 k ≤ 0
phl if phk−1 = phl and ∆Gk ≥ ε
phl+1 if phk−1 = phl and ∆Gk < ε
ph0 k ≥ T

(7)

where ∆Gk = ‖G(xk, phk) − G(xk−1, phk−1)‖ and ε is a
threshold value.

3.1.1. First function

The first term in (6) is a Gaussian function which aims to de-
scribe the likelihood to be close to the phk target-phone.

G1(xk, phk) = (8)
1

2πσphk
e

(
− 1

2
(xk−µphk

)>σ−1
phk

(xk−µphk
)
)

where

µphk
=
[
µF1

phk µF2
phk

]>
and σphk =

[
σF1

phk 0

0 σF2
phk

]
are respectively the 2x1 mean vector and the 2x2 diagonal co-
variance matrix of the first and second formant distribution. It is
assumed to have no correlation between the two formant values.

In Figure 6, it is shown that, without any limitation given
by G2 or G3 (i.e. c2 = c3 = 0), the trajectory almost reach the
mean positions of every phone. In this case, the trajectory can
be assumed to have achieved a completely realised (i.e. fully-
articulated) version of the target vowel sequence.

3.1.2. Second function

The second term,G2(xk), in the optimisation function depends
on the current position only and it is motivated by the hypothesis
that an unique Low-Energy (LE) attractor exits for vowels in
human speech production. This attractor can be identified in
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(a) phk label = ’aa’
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(b) phk label = ’iy’

Figure 5: Examples of trajectories to visit different targets when
G1 alone is activated in G (c1 = 1, c2 = 0, c3 = 0).
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Figure 6: Complete resulting trajectory in the two-dimension
vowel space when G1 alone is activated.

the mid-central vowel schwa [7]. This LE-emulation function
describes the likelihood of being close to the central vowel and
it can be expressed by the following single Gaussian function:

G2(xk) =
1

2πσLE
e(−

1
2
(xk−µLE)Tσ−1

LE
(xk−µLE)) (9)

withµLE =
[
µF1
LE µF2

LE

]> andσLE =

[
σF1
LE 0
0 σF2

LE

]
.

µLE is assumed to have the same values as µschwa while the
variance σLE must have a big enough value to allow for every
realisation in such a space.

In Figure 8, it can be seen that, as expected, the trajectory
never escape from the attraction of the LE point.

3.1.3. Third function

The third term in G(x, ph) models the likelihood for a point in
the space to be a not-target phone. It can be expressed as the
following Gaussian mixture function:

G3(xk, phk) =

N∑
i=1,phi 6=phk

1

2πσphi
e

(
− 1

2
(xk−µphi

)>σ−1
phi

(xk−µphi
)
)

(10)
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Figure 7: Example of likelihood distribution when G2 alone
is activated (c1 = 0, c2 = 1, c3 = 0). σF1

LE = 500 and
σF2
LE = 1300.

whereN is the number of phones in the acoustic space and phk

the current target whose likelihood should not be included in
the mixture.

It is worth to notice that the parameter c3 in (6) must be a
negative number because the likelihood of being close to non-
target should be minimised in the overall function.

Being the peripheral zone of the vowel space the most likely
area far from all competitors (see Figure 9a and Figure 9b), it
can be observed that the trajectory resulting from this function
can easily escape outside the space boundaries.

3.1.4. Trajectory computation

The optimisation function (6) described in the above paragraphs
is used to compute the trajectory at every step, using an heuris-
tic algorithm to reach the most likely point. This is, by defi-
nition, a sub-optimal algorithm but it is chosen to understand
what degree of prediction is needed in such decision process. In
particular, it is important to study whether the optimisation can
be done locally or it should be done taking into account of the
whole path. In details, the trajectory update expression is

xk+1 = arg max
x

G(Ck, phk) (11)

whereCk is a circular point subset around xk. Such a circle is
used to reduce the complexity of G(x, ph) computation and its
radium, rk, is dependant on the distance to the target:

rk = r0 · dk = 0.1 · ‖phk − xk‖ (12)

with r0 is a arbitrary scaling factor.
The search for the global maximum is extremely difficult

with this heuristic optimisation because several local maximum
appear in such a space. The main consequence is that the tra-
jectory could easily be trapped in some local maximum point
which is not the desired target (see Figure 11).

Even though this system still exhibit several limitations, es-
pecially in the planning algorithm, some connection with some
of the most popular theories of speech production can be ob-
served. The differences among the {cj} parameters can be cor-
respondent to motivation which the system is allowed to use
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Figure 8: Complete resulting trajectory in the two-dimension
vowel space when G2 alone is activated. {xk} never escape
from the LE point because there are no other active attractors.
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(a) phk label = ’aa’
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Figure 9: Example of likelihood distribution when G3 alone is
activated in G (c1 = 0, c2 = 0, c3 = −1). In peripheral area
the likelihood of being far from not-target phone is higher.

to generate the trajectory. The LE attractor function, G2 con-
trols the degree of vowel dispersion/reduction and G3 represent
a way to manipulate phonetic contrast.

In the end, it is worth to emphasise that every point in the
trajectory can have a direct correspondence to a voiced sound
and, therefore, every trajectory can be easily synthesised with a
formant synthesiser such as the Holmes synthesiser [14].

4. Conclusions and further direction
The models proposed in this paper represent a useful framework
to study some issues related to some optimisation problems in
human speech production. The problem was in fact modelled
as a trajectory optimisation task in a multidimensional space to
reduce the intrinsic complexity.

The biggest advantage of these models is the dimensional
reduction, which allows to represent the events in a two-
dimensional space and to visualise the resulting trajectories as
they were physical paths among obstacles. Even though these
methods are still at an early development stage, it has been
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Figure 10: Trajectory in the vowel space when G1 and G2 are
activated (c1 = 10, c2 = 10−3, and c3 = 0). ph2 and ph4 are
not achieved because they are too far from the LE attractor.

observed that some links with some of the major elements of
human speech production can be established. A more careful
comparison with similar computational models has indeed to
be done in order to evaluate the performances of this model.

Further development is needed to compute the optimal path.
Some trajectory-evolution prediction along with some past po-
sition memory would improve performance especially in order
to avoid local maximums.

Another great opportunity of such models is its flexibility.
Potentially, many further functions can be added in order to
model different aspect of speech production. For example, a
masking disturbance could be described as an obstacle to avoid
in such simplified spaces. Hence, the new optimisation would
compute the trajectory avoiding the new obstacles.

The development of such controlling functions represents
a great opportunity to create a better computational model to
be used in automatic speech synthesis as well. This would be
extremely important, since most of the state-of-the-art synthesis
systems exhibit a rather limited range of speaking styles as well
as an inability to react to conditions in which they operate.
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