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Abstract
State-of-the-art solutions in ASR often rely on large
amounts of expert prior knowledge, which is undesirable
in some applications. In this paper, we consider a NMF-
based framework that learns a small vocabulary of words
directly from input data, without prior knowledge such as
phone sets and dictionaries. In the context of this learn-
ing scheme, we compare several spectral representations
of speech. Where necessary, we propose changes to their
derivation to avoid the usage of prior linguistic knowl-
edge. Also, in a comparison of several acoustic modelling
techniques, we determine what model properties are ben-
eficial to the framework’s performance.
Index Terms: keyword learning, non-negative matrix
factorisation, clustering, acoustic modelling

1. Introduction
After decades of progress, Automatic Speech Recogni-
tion (ASR) has improved to the point of recognising huge
vocabularies of words with accuracies that are not so far
from those of humans, especially under favourable con-
ditions. A downside, however, is the fact that ASR relies
heavily on prior linguistic information such as phone sets
describing the sounds of speech, dictionaries describing
all the words in the vocabulary, context-dependency trees,
co-articulation rules, etc. All this knowledge must be en-
tered into the system by human experts, which is a time-
consuming and expensive process. Moreover, acoustic
models are typically trained using tens to hundreds or
even thousands of hours of speech.

This reduces the flexibility of ASR, because much of
this prior knowledge is language- or dialect-specific, and
acoustic models only generalise well to speakers with the
roughly the same speech characteristics. In contrast, we
consider the group of people who suffer from a degener-
ative illness which affects the functioning of their upper
limbs. Their pathology may affect their speech patterns
in ways that are not covered by any standard acoustic or
linguistic model, and vary from speaker to speaker. For
them to operate assistive devices by voice ASR systems
are needed which can discover relevant speech-related in-
formation with a minimum of prior knowledge, based on
inputs provided by the end user [1]. Also in areas like
robotics there is a growing interest in such “self-learning

voice interfaces” [2, 3].
The automatic discovery of linguistic information has

received considerable attention in recent years. For in-
stance, a variety of methods for data-driven discovery of
acoustic units have been proposed, e.g. [4, 5, 6], as well
as methods to discover entire words or word-like patterns
in acoustic data, e.g. [7, 8]. For a more thorough discus-
sion of related methods, we refer the reader to [9] and the
references therein. As a first step toward more complex
systems, in this paper we consider the task of speaker-
dependent word finding - building acoustic models of a
select set of keywords from utterances containing mul-
tiple words, without knowing their order or location in
the sentence. In [10], a word learning (keyword acquisi-
tion) method based on Non-negative Matrix Factorisation
(NMF) was proposed. In the NMF-based approach, sen-
tences are represented as a single vector indicating the
presence of sound events or sequences of sound events,
and each sentence is associated with one or multiple key-
word labels. Word learning is done by factorising the
collection of sentence-level observations into a matrix de-
scribing the features of individual keywords, and a matrix
indicating the presence of these keywords in the observed
utterances.

The sentence-level feature vector is created by quan-
tising a spectral representation into a sequence of sound
events, and then converting it into a histogram of sound
events or histogram of co-occurring sound events (HAC)
[10]. As such, the effectiveness of the word learning re-
lies critically on the spectral representation that is used,
and the method of quantising the spectral representation
into a intermediate representation. Our contribution in
this work is threefold. First, we investigate to what ex-
tent the effectiveness of NMF-based word learning can
be improved by using discriminative features employed
in modern ASR systems, instead of MFCC features [11].
In this work, we will make use of the Mutual Informa-
tion Discriminant Analysis (MIDA) features proposed in
[12]. Second, since discriminative features traditionally
employ a set of predefined phone classes which con-
stitute exactly the sort of prior knowledge we wish to
avoid, we will propose a data-driven approach to gener-
ate MIDA features. Finally, we will compare the effec-
tiveness of several methods to quantise the spectral rep-
resentation into an intermediate representation of sound



events, based on K-means clustering and Gaussian Mix-
ture Models (GMMs) [10, 13].

The rest of the paper is organised as follows: in
section 2 we describe the NMF-based method for word
learning. The spectral representations considered in this
paper are described in section 3 and the intermediate rep-
resentations in 4. In section 5, we describe the experi-
mental setup, such as the keyword acquisition task used
for evaluation, the results of which are shown and dis-
cussed in section 6. The conclusion and presentation of
future work follows in section 7.

2. A Computational Framework for Word
Learning

2.1. Non-negative Matrix Factorisation (NMF)

NMF is a technique to decompose a non-negative matrix
V of size M × N into a product of non-negative matrix
factorsW andH of respective sizes M ×R and R×N
and R � M and R � N . We write: V ≈ W · H .
This factorisation is solved by minimising the Kullback-
Leibler divergence

DKL(V ||WH) =
∑
ij

Vij log
Vij

(WH)ij
−Vij+(WH)ij

(1)
which is done by alternatingly applying multiplicative
updates to W and H [14, 15]. After factorisation,
columns of the matrix H indicate, for each column in
V (representing an utterance), which patterns (columns
in W ) are present. Formally, to learn words with NMF
we need an operator ψ(·), which converts variable-length
speech segments into non-negative vectors of a fixed di-
mensionality M . This operator must be such that for any
utterance U , consisting of the words (w1, w2, . . . , wp),
holds:

ψ(U) = ψ(w1) + ψ(w2) + . . .+ ψ(wp) (2)

Applying ψ(·) on a set of N different speech utterances
allows the creation of the N columns in a data matrix V .
After decomposingV with NMF, theR columns ofW in
principle contain representations ψ(wi), for all different
words in the data.

2.2. Weakly Supervised Training

In order to learn the association between the word rep-
resentations ψ(wi) in W and the keyword labels pro-
vided with the observed speech segments, we add super-
vision information to V . The supervision also helps to
improve the convergence of the NMF-based representa-
tions to keyword representations and to avoid local op-
tima. Renaming V and W to V1 and W1 respectively,
we rewrite the factorisation as[

V0

V1

]
=

[
W0

W1

]
H (3)

Where V0 marks which keywords are contained in each
of the utterance representations in V1:

V0,ij =

{
1 if word i in utterance j
0 otherwise . (4)

The matrixW0 is initialised as

W0 = [IK |G] (5)

with K being the number of keywords, IK a K × K
identity matrix with random positive values of magnitude
O(1e−4) added to it, andG a K× (R−K) matrix with
random positive values of magnitude O(1e − 4). Note
that IK is allowed to update even though in practise it
does not diverge much from the identity matrix. This
setup leads to solutions where each of the K keywords
is mostly assigned to a single column inW . The remain-
ing (R − K) columns typically model all non-keyword
(filler) input.

2.3. Evaluation

In a set of previously unseen testing utterances, converted
with ψ(·) into a matrix V (tst)

1 , the K keywords are de-
tected by using their representations discovered during
training, i.e. W1. Concretely, we solve

H(tst),∗ = arg max
H(tst)

DKL(V
(tst)
1 ||W1H

(tst)) (6)

after which the activation matrixA is calculated:

A = W0 ·H(tst),∗ (7)

The matrix A is a prediction of V (tst)
0 , the unobserved

part in the testing data. The accuracy is determined as
the Unordered Error Rate (UER), obtained by compar-
ing the nj keywords present in each utterance j with the
keywords indicated by the nj highest values in the corre-
sponding column ofA. Formally:

UER = 100

∑N
j=1 #substitutionsj∑N

j=1 nj
% (8)

Note that the UER can only be calculated if the same
keyword does not occur twice in a testing utterance and
if the number of keywords occurring in each testing ut-
terance is known. While this would not be the case most
realistic applications of this learning framework, research
in [9] has shown it is a good measure of the system’s ac-
curacy.

3. Spectral Representations
The basis for the majority of speech processing applica-
tions is a framing and windowing of the acoustic signal
followed by the application of a Mel-scale filterbank, a
set of bandpass filters whose bandwidth and spacing are
based on human auditory perception. This filtering gives



rise to log-Mel spectra [11]. In this paper, frames of
25ms are shifted over the signal in increments of 10ms
and weighted with a Hamming window. Applying a Mel
filterbank results in a total of 22 Mel-spectral coefficients
in each frame. Since the Mel-spectral coefficients are
correlated, they are sub-optimal for further modelling of
speech. In part, this is because the correlations in this
representation introduce redundancy which causes its di-
mensionality to be unnecessarily high. Also, the corre-
lations themselves are difficult to capture with computa-
tionally efficient models, popular in ASR, such as diago-
nal covariance GMMs. Decorrelation and dimensionality
reduction is also important in the NMF-based word learn-
ing framework, since models such as GMMs are used to
create intermediate representations (c.f. Section 4). We
compare two methods to enhance the spectral representa-
tions of speech: MFCC features [11] and discriminative
features called Mutual Information Discriminant Analy-
sis (MIDA) features [12]. In addition, we propose a data-
driven method to derive MIDA features that does not de-
pend on prior knowledge such as a phone set.

3.1. MFCC features

MFCCs are obtained by applying an Inverse Discrete
Cosine Transform (IDCT) to log-Mel spectra and thus
describe the shape of these spectra in terms of high-
and low-frequency cosine functions. Only a few of
these coefficients, those that correspond to low quefrency
components, are relevant for making phonetic distinc-
tions between sounds. As such, they form a good low-
dimensional description of the speech frame. In addi-
tion, the IDCT-transformation applied to speech shows
similarities with Principal Component Analysis (PCA),
a method for decorrelating features, which implies that
the correlations between MFCCs are reduced compared
to Mel-spectral features [16, 17, 18, 19].

In this paper, we determine 11 MFCCs in each
frame, in addition to the log energy. The resulting
12-dimensional representations are then augmented with
their first and second order differences (∆- and ∆∆-
features), yielding a total of 36 coefficients per frame.

3.2. MIDA features

MIDA features are obtained with a linear transformation
that maximises the separability between different classes
of input frames. In this paper, we determine ∆- and ∆∆-
features on the 22 log-Mel spectral features, leading to
66-dimensional input vectors. On these representations
we then perform the MIDA-transformation, separating
the classes in the input space and at the same time reduc-
ing its dimensionality from 66 to 36. We used 36 result-
ing dimensions to keep correspondence with the dimen-
sionality of the MFCC features). Note that this procedure
differs from the creation of MFCC features described
above, where dynamic information was only added at the
very end.

In essence, the MIDA transformation is the concate-
nation of two different transformations. The first reduces
the dimensionality of the input space in such a way that
the loss of class information is minimal. The second
transformation is performed in the reduced domain and
minimises the off-diagonal values of the classes’ covari-
ance matrices. For further details, see [12]. In order to
find the MIDA transformation, a frame-level classifica-
tion of the training data is needed. In this paper, we use
123 speech classes, consisting of 41 phones described
with 3 states. The frame-level classification is done by
a forced alignment with the canonical transcription of the
training data using a trained speech recogniser operating
on MFCC features.

3.2.1. Data-driven MIDA features

The acoustic model used to classify the frames of the
training data includes a predefined set of HMM-states
with probabilistic models for their emissions, a prede-
fined set of phones with their corresponding state se-
quences, and a predefined way of concatenating such
phones into words. In order to avoid such use of prior
knowledge, we have created a frame classification us-
ing Vector Quantisation (VQ)[20]. Our implementation
of VQ relies on first applying K-means clustering the
frames of the training data into Nc = 100 clusters, us-
ing a Euclidean distance measure operating on MFCC
features. Every frame of the training data is then as-
signed to the cluster centre with the smallest Euclidean
distance. Rather then using the entire training set how-
ever, we use a random subset of the training data, taking
care that each speaker in the training data is equally rep-
resented. The resulting subset consists of 53550 frames.
The MIDA transformation that optimally separates the
resulting 100 data classes converts the log-Mel spectra
into 36-dimensional features that we dub “VQ-MIDA”
features. We will refer to the original MIDA-features
obtained using an a priori defined acoustic model as
“Oracle-MIDA” features.

4. Intermediate Representations
The NMF-based word learning framework used in this
work does not operate directly on the spectral represen-
tations of utterances. For one, these spectral representa-
tions typically contain negative values, making them un-
suitable as input for NMF. Another issue is that their di-
mensionality varies with the utterances’ duration. Most
importantly, however, they do not contain the latent lin-
ear structure put forward in (2) that allows the discov-
ery of words. Therefore, the spectral representations are
converted into an intermediate data representation with
an operator ψ(·). In this work, this operation consists of
defining a set of possible acoustic events, detecting their
occurrences in the utterance, and accumulating these oc-
currence counts over the utterance, thus creating a his-
togram.



Figure 1: Determining the combined occurrences of
acoustic events at a time offset τ

All information regarding timing and sequencing of
events in the utterance is lost in this operation. To re-
tain some of this information, we define a histogram in
which combined occurrences of acoustic events at a cer-
tain time offset τ are counted, raising the dimensionality
of the resulting histograms to the square of the number
of acoustic events defined. This is illustrated in figure
1. This representation is named the Histogram of Acous-
tic Co-occurrences (HAC) [10]. In this paper, we create
three HAC-vectors for each utterance, using time offsets
20ms, 50ms and 90ms, and concatenate them into a single
intermediate representation. In the remainder of this sec-
tion, we discuss several methods to define acoustic events
based on the spectral representations described in section
3.

4.1. Vector Quantisation (VQ)

In the original proposal of NMF-based word discovery in
[10], spectral features are quantised using Vector Quanti-
sation. In this approach, each frame of a speech segment
is associated with a single index, the VQ-label, and the
occurrence of VQ-labels is treated as acoustic events on
which HAC features are created. Using the procedure
described in section 3.2.1, we create a VQ codebook of
size Nc on a random subset of the training data, taking
care that each speaker in the training data is equally rep-
resented. The resulting subset consists of 267750 frames.
This subset is larger than the subset used to train the VQ
codebook in section 3.2.1 in order to keep correspon-
dence with the creation of GMMs described below, but
pilot experiments revealed that the resulting codebooks
are comparable. We refer to the use of VQ in an in-
termediate representation as “VQ-HAC”. Concatenating
the histograms for different τ -values leads to intermedi-
ate representations of dimensionality 3 ·N2

c .

4.2. Soft-VQ

As a straightforward extension to VQ, one can fit the data
in each cluster with a probabilistic model [21]. In this
paper, we model each VQ cluster with a full-covariance
Gaussian. In order to avoid data scarcity, we first as-
sign all the frames in the training data to the clusters ob-
tained with K-means clustering, after which the covari-
ances are obtained on the resulting class subsets. The use
of a probabilistic model allows the calculation of p(c|xt)
with 1 ≤ c ≤ Nc, i.e. the posterior probability over the
classes, given each datapoint xt. Rather than having a bi-

nary co-occurrence of VQ-labels, we can now define the
co-occurrence of posteriors as p(c|xt) · p(c|x(t+τ)) [13].
However, since the use of sparse co-occurrence vectors is
computationally efficient, we will retain only the 3 most
likely classes in each frame. We will refer to this inter-
mediate representation as “SVQ-HAC” (Soft VQ-HAC).

4.2.1. Gaussian Mixture Models (GMM)

K-means clustering, which lies at the basis of VQ-
labelling, can only discover classes that are roughly
spherical, and then only if the algorithm has been ini-
tialised properly [22]. A GMM is a probabilistic model
which consists of a weighted combination of Gaussians.
Since a GMM can approximate any probability distribu-
tion [23, 24], they can be used to model classes of any
shape, making them in theory superior to the use of VQ-
labels. In this paper, shared-Gaussian GMMs are deter-
mined with the following procedure:

1. K-means clustering of the data into Ng clusters

2. Fit a diagonal-covariance Gaussian on each cluster:
initial meanµk and covariance Σk for 1 ≤ k ≤ Ng

3. Initialise Nm GMMs by using agglomerative clus-
tering on theNg Gaussians with the KL-divergence
as distance metric [9]

4. Perform EM training to update the mixture
weights, means and covariances

The set of Nm GMMs (using Ng = 1000 shared
Gaussians) thus defined is then used to generate a poste-
rior probability for each class and each frame in a speech
segment. As with VQ/SVQ-HAC, we investigate two
representations: using a single label and three labels per
frame, dubbed “GMM-HAC” and “SGMM-HAC” (Soft
GMM-HAC), respectively. The resulting feature vectors
have a dimensionality of 3 ·N2

m.

5. Keyword Acquisition task
The data on which we evaluate this framework was
recorded in the context of the ACORNS project
(Acquisition of COmmunication and RecogNition
Skills) [25, 26]. It consists of a total of 13188 gram-
matically simple English sentences in the trend of “Do
you see daddy and the red ball?”. These sentences con-
tain a total number of 50 different keywords, up to 4 per
sentence. They are uttered by 10 different speakers, 6 of
which are male, while 4 are female. The data is split up
into a training set containing 9888 randomly selected ut-
terances, and a testing set containing the 3300 remaining
ones. Each speaker is equally well-represented in both
training and testing set, to reflect the fact that the pur-
pose of NMF-based word learning is to make speaker-
dependent models from user data.
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Figure 2: Unorderered error rates (UER) obtained with
different spectral representations, using VQ-HAC as in-
termediate representation. The horizontal axis (#labels)
represents the number of clusters Nc. The vertical bars
around the data points denote the standard deviation over
5 different random initialisations of the NMF.

5.1. NMF

NMF word learning was carried out using 100 multiplica-
tive updates, and NMF-based evaluation was done using
30 multiplicative updates as in [9]. The matrix W con-
tains 75 columns; K = 50 columns representing the key-
words and the (non-critical) number of columns describ-
ing filler words was (R−K) = 25.

6. Results and Discussion
6.1. Spectral Representations

To evaluate the spectral representations, an intermediate
data representation must be selected. We opt here for
VQ-HAC, which was described in section 4.1, because
of its limited computational demands. The assumption is
thereby made that no dependency exists between the low-
level features and this intermediate representation. The
codebook size Nc in the creation of these intermediate
representations was varied between 100 and 600, with in-
crements of 100. The UERs that result from this exper-
iment are shown in figure 2. These values are subject to
slight variations, due to the random initialisation of the
NMF framework. Therefore, each result shown in this
figure is the average taken over 5 repetitions of the same
experiment.

These results show that MIDA features significantly
outperform the MFCCs in this word learning task. For
Oracle-MIDA features, this is not unexpected since their
creation involves prior linguistic knowledge. However,
we can observe that with VQ-MIDA features, which are
created in a completely data-driven way, we can achieve
results that are competitive, especially for small code-
book sizes in the VQ-HAC. This demonstrates that the ef-
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Figure 3: Unorderered error rates (UER) obtained
with different intermediate representations, using Oracle-
MIDA spectral features. The horizontal axis (#labels)
represents either the number of clusters Nc (for (S)VQ-
HAC) or the number of GMMs Nm (for (S)GMM-HAC).
The vertical bars around the data points denote the stan-
dard deviation over 5 different random initialisations of
the NMF.

fectiveness of modern discriminative spectral representa-
tions can be retained even without the use of prior knowl-
edge.

6.2. Intermediate Representations

To evaluate the different intermediate representations de-
scribed in section 4, we perform the same keyword learn-
ing experiment as described above, but now using a sin-
gle spectral representation. For the spectral representa-
tion we use Oracle-MIDA features since they have proven
to be the most effective in terms of recognition accuracy.
The codebook sizeNc and the number of GMMsNm, for
the creation of respectively (S)VQ-HAC and (S)GMM-
HAC, was varied between 100 and 600, with increments
of 100.

The results are shown in figure 3. We can observe
in this figure that the ‘soft’ representations, SVQ-HAC
and SGMM-HAC, outperform their hard counterparts,
VQ-HAC and GMM-HAC respectively, by a fair mar-
gin. Moreover, the results show that with soft representa-
tions, the highest accuracies are reached using 600 code-
words/GMMs, suggesting further improvements are still
possible. This is not the case for the hard representations,
as the decrease in UER seems to level off after increasing
the number of GMMs/codewords beyond 500.

The difference between VQ-HAC and GMM-HAC is
very large. The reason for this is that VQ-HAC makes
use of Euclidean distances, assuming the clusters to be
spherical, whereas the labelling in GMM-HAC is based
on clusters of any shape. The differences between SVQ-
HAC and SGMM-HAC, however, are not very large.



Both methods perform a soft assignment to 3 different
clusters for each speech frame. For SVQ-HAC, although
the the clusters are modelled by a full-covariance Gaus-
sian, they still can only model elliptical shapes. The
fact that SGMM-HAC may model clusters of any con-
ceivable shape in this case turns out to be only a mi-
nor advantage performance wise. Still, its reliance on
diagonal-covariance Gaussians makes it computationally
much more tractable than SVQ-HAC, which requires the
expensive evaluation of full-covariance Gaussians.

7. Conclusions and Future Work
The experiments of section 6.1 have shown that the use of
MIDA features, as proposed in [12], leads to substantially
lower UERs than the use of MFCC features. The reason
is that MFCCs are only based on the heuristic idea that
smooth components of the log-Mel spectrum are the most
relevant for ASR, while MIDA finds a representation that
optimises the discrimination between speech classes.

Moreover, we have demonstrated that MIDA repre-
sentations, which are usually derived using expert knowl-
edge, can also be determined using a data-driven cluster-
ing into speech classes with little loss of performance.
This means that the goal of building a self-learning sys-
tem, which precludes the use of prior knowledge, does
not rule out the usage of sophisticated discriminative fea-
tures used in modern ASR systems.

The experiments of section 6.2 revealed that the Vec-
tor Quantisation approach first proposed in [10], can
be improved upon in several ways. Firstly, using co-
occurrences of posterior features (‘soft’ assignments)
rather than co-occurrences of single speech class labels.
Secondly, using intermediate representations based on
GMMs, because these allow us to model the speech clus-
ters more accurately.

In conclusion, we have reduced the error rate ob-
tained on this keyword acquisition task from 4.48%, ob-
tained with VQ-HAC on MFCC features, to 1.53% with
SGMM-HAC on Oracle-MIDA features. To the best of
our knowledge, the latter is the best result as of yet ob-
tained on this task. Future work will focus on a compar-
ison with the performance obtained with a conventional
ASR system, as well as developing methods to recover
word-over, for example by employing sliding windows
or non-negative matrix deconvolution.
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