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Abstract 

We present a novel approach for automatic Language 

Identification (LID) using spectro-temporal patch features. Our 

approach is based on the premise that speech and spoken 

phenomena are characterized by typical visible patterns in time-

frequency representations of the signal, and that the manner of 

occurrence of these patterns is language specific. To model this, 

we derive a randomly selected library of spectro-temporal 

patterns from spoken examples from a language, and derive 

features from the correlations of this library to spectrograms 

derived from the speech signal.  Under our hypothesis, the 

relative frequency of correlation peaks must be different for 

different languages. We model this by learning a discriminative 

classifier based on these features to detect the presence of the 

language in a recording. The proposed approach has been tested 

on two different datasets: the VoxForge multilingual speech data 

and CallFriend corpus available from the Linguistic Data 

Consortium (LDC).  

Index Terms: Language identification, Spectro-temporal 

patches, Discriminative classification. 

1. Introduction 

Language Identification is a problem of identifying the language 

in a spoken utterance. It has many applications, such as for 

categorization of audio material, front-ends for multilingual 

speech recognition systems, automatic customer routing in call 

centers of different companies etc.  

The most successful approaches to automatic language 

identification thus far have explicitly utilized the phonotactic 

structure of the spoken language. For instance, phone-

recognition based approaches [1], [2] compute the score for any 

language through a phoneme recognizer that is guided by an N-

gram language model for the phonemes in the language. Parallel 

phone recognition based techniques [3], [4] go a step further and 

simultaneously recognize the speech using phoneme recognizers 

for multiple languages, and utilize the ensemble of outputs to 

identify the language. LVCSR based systems perform entire 

large vocabulary recognition [5]. In each case, the identification 

of the language is based on matching entire phoneme-level 

spectral patterns in the incoming speech to known patterns for 

the language to identify it. 

Regardless of the success of phoneme-based methods, it is 

generally also acknowledged that information about the identity 

of the language is also present in the spectro-temporal patterns in 

the signals, evidenced partially by the fact that humans can often 

identify a language even when they do not have a working 

knowledge of the language.  Consequently, a large number of 

purely acoustics based methods for language identification have 

also been proposed in the literature. GMM-based methods [7] 

only model the distribution of individual spectra of recordings 

from the signal. However, even acoustically, it is generally 

understood that the information actually lies in longer-range 

patterns. Consequently Pedro et al.[8] have modeled the 

sequence of Gaussian indices obtained for individual frames of a 

recording from a GMM. Ma et al. [9] use automatically defined 

acoustic segment units to model the distinction between 

languages. In all of this too, the patterns that are modeled are still 

spectrally complete – they only vary in their temporal extent.  

In this paper we propose to exploit an entirely different scale 

of feature. We hypothesize that the information about the 

underlying message in a speech signal also lies in local spectro-

temporal patterns in the signal. A significant aspect of the 

distinction between different languages lies in the nature and 

manner of occurrence of these patterns. By appropriately 

characterizing the patterns and the rate and manner in which they 

occur, we can therefore expect to identify the language being 

spoken. We note that a similar hypothesis has previously also 

been explored by Ezzat et al.[6] for word spotting. 

The above hypothesis would argue that in order to identify 

the spoken language properly, we must therefore know about the 

spectro-temporal patterns in all candidate languages that may 

have been spoken. However, motivated by the fact that humans 

can often detect a segment of familiar sounding language even in 

the midst of a stream of otherwise unrecognizable gibberish,  we 

pose the problem differently: as one of merely determining if the 

patterns typical for a given language occur or not. Thus our 

solution is more appropriately called language detection rather 

than identification. 

To learn the spectro-temporal patterns and their occurrence 

patterns automatically, we use an approach similar to that in [6]. 

We derive a large number of randomly chosen spectro-temporal 

patterns from examples of the language. We characterize the rate 

of occurrence of each of these patterns through their correlation 

to spectro-temporal representations of the signal. Finally, a 

discriminative classifier employs these characterizations as 

features for classification. 

Preliminary results on two different databases indicate that 

the proposed approach is able to perform very accurately on 

detecting a target language even in snippets of speech that are 10 

seconds or shorter in length.  

We have performed a comparison of our approach with the 

work done by Campbell et al. [11], in which SDC (shifted delta 

cepstral coefficients) have been used as feature vectors. The 

comparison shows that the proposed approach is competitive. 

Notably, the features we use are very dissimilar to those in 

Campbell et al. Presumably, combining the two could result in 

even better performance. 

The rest of the paper is arranged as follows. In Section 2 we 

describe the overall rationale behind the use of spectro-temporal 

patterns for language identification. In Section 3 we outline our 
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mechanism for learning spectro-temporal patch dictionaries. In 

Section 4 we describe how we use these to derive features from 

the speech data. Section 5 describes our classification strategy, 

Section 6 presents our experiments and in Section 7 we give our 

conclusions. 

2. Rationale behind spectro-temporal 

patches for language identification 

2.1 The information in speech is represented in its 

spectro-temporal patterns 

It is well known that the identity of a speech sound is evident 

from the spectro-temporal patterns in spectrographic 

representations. In fact, many early speech recognition systems 

attempted to utilize this characteristic by explicitly attempting to 

“read” the spectrogram. Later research veered away from this 

approach to frame-based statistical characterizations that only 

explicitly represented the spectral characterizations, leaving the 

representation of temporal characteristics to an underlying 

Markov chain in a hidden Markov model. 

Although several researchers have attempted to revisit 

explicit spectro-temporal characterizations, these approaches 

have largely not resulted in significant improvement over the 

HMM approach, primarily because they remained tied to a state-

based characterization [SSMs] or to length restrictions in 

patterns [STMs] and also generally ignored the fact that the 

patterns in the speech spectrogram include both frequency-

localized long-term patterns that extend over several tens of 

milliseconds and short-term patterns that are local not only in 

frequency, but also in time. 

Yet it remains true that the typical local patterns such as 

formant trajectories etc. in spectrograms remain visible even in 

high levels of noise, even when the individual spectral vectors in 

the signal are corrupt beyond recognition. It also remains true 

that these patterns characterize nearly the totality of the 

information in the speech signal, including the identity of the 

underlying phonemes, the speakers, and the language being 

spoken. 

 

 

 

 

 

 

 

 
 

2.2 Characterizing speech through local spectro-

temporal patterns 

In this paper we therefore revisit the use of explicit 

characterizations of spectro-temporal patterns in the speech 

signal to perform pattern classification tasks on speech, 

specifically that of identifying language.  
 

Our approach is based on the following observations:  

a) The identity of the sound in any speech recording is 

encoded in the spectro-temporal patterns that occur in it. 

b) These patterns are local in the time-frequency plane. 

c) The identity of a language is encoded in the pattern of 

occurrence of these spectro-temporal patterns. 
 

We will, however not attempt to identify the specific patterns 

that are most useful. Instead, we will hypothesize a large number 

of them and determine their relevance to the task at hand in a 

data driven manner. 
 

3. Spectro-temporal patch dictionary 

As mentioned above, we do not attempt to identify the most 

relevant spectro-temporal patterns explicitly. Instead, we 

hypothesize a large number of candidate patterns, all of which 

are likely to carry relevant information. 

To represent the spectro-temporal patterns in any language, 

we create a patch dictionary, consisting of randomly chosen 

rectangular spectro-temporal patches of random sizes, from the 

spectrogram of a relatively small amount of exemplar training 

data from the language.  These patches are extracted from 

random locations in time and frequency in the spectrograms of 

the exemplar data. The height and width of each patch 

(representing its span along the frequency and time axes) are 

chosen randomly from a spectral range Frange and a temporal 

range Trange respectively. Finally, all patches with a total energy 

below a threshold are discarded, to ensure that all patches that 

are extracted have some energy in them; otherwise we might end 

up with a lot of empty patches that carry little or no acoustic 

information. The remaining patches are stored in the dictionary 

along with the frequency location from where they were derived. 

Figure 1 illustrates patch extraction from a spectrographic 

representation of an audio file. Given a sufficiently large number 

of patches, several of them will capture many types of typical 

spectro-temporal phenomena, such as formant ridges/sweeps, 

harmonic lines, noise patterns, etc., some of which will be 

characteristic of the language. 

4. Patch based feature extraction 

The library of spectro-temporal patches can now be used to 

derive features from any spectrogram.  We employ each of the 

patches as a matched filter on the spectrogram. We correlate the 

patch with the entire strip of the spectrogram that represents the 

same frequency range as the patch. Peaks in the correlation 

indicate matches, indicating occurrences of the patch. 

Enumerating these gives us an indication of the rate of 

occurrence of the patch within the spectrogram.  This is 

illustrated in Figure 2. Let Pi(f,t) represent the ith patch in our 

library. Let there be M patches in our dictionary.  Our extracted 

patch dictionary can hence be represented as P = {Pi(f,t) : i = 

1...M}. We will now use this dictionary to compute the feature 

vector for any speech recording. 

Let S(f,t) represents spectrogram of a signal s. Let, T be the 

total length of the spectrogram. Let Wm and Hm be the width and 

height of the mth patch in the dictionary. Let Fm be the frequency 

location from which it was drawn. 

In order to compute a match between Pm(f,t) and the signal s, 

we compute the cross correlation between Pm(f,t) and the portion 

of the spectrogram S(f,t) that covers the same frequency range as 

Pm(f,t), i.e. the sub-spectrogram Sm(f,t) = S(f,t) | Fm<= 

f<=Fm+Wm. In principle, this could be computed very fast using 

a 2-D fast-Fourier transform, however such a computation would 

ignore local variations in signal level differences and results in 

poor characterization of the signal. Instead, we use a normalized 

Figure 1: Sample patches from a spectrogram 



2-D cross-correlation to characterize the match. Moreover, in 

order to account for the fact that the precise location of 

spectrographic pattern along the frequency axis may vary from 

speaker to speaker, depending on their gender, the length of their 

vocal tract etc., it is not sufficient to merely compute the 

correlation in the frequency range Fm instead we consider an 

extended frequency range(Fm–Δf/2, Fm+Δf/2), and use the peak 

correlation within this range as the overall normalized cross 

correlation at each instant. 

 

Thus, for the patch Pm(f,t), we obtain the normalized cross-

correlation at any time tn as: 
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and where  ̅      is the mean of the spectrographic region given by  

S(f,t) | F<= f<=F+Wm and   
̅̅̅̅ is the mean of the patch. 

This results in a sequence of Cm(t) values representing the 

normalized cross correlation function between Pm(t,f) and S(t,f) 

and is a series of cross-correlation values. From this series 3 

numbers are computed: the mean, the variance, and the number 

of times it exceeds a threshold. The threshold used in this 

experiment is 0.6 per unit time, representing the rate of detection 

of the patch. These three values are derived for every patch in the 

dictionary. Thus, for a dictionary with M patches, we derive a 

3M dimensional feature vector for every speech recording. 

 

5. Discriminative classification via SVM 

As mentioned in the introduction, we actually perform a binary 

language detection task, rather than multi-class language 

identification; however the procedure is easily extended to multi-

class classification as well. The 3M dimensional patch-based 

features are now used in a discriminative classifier. We obtain a 

collection of within-language and out-of-language recordings as 

positive and negative exemplars, derive feature vectors for all of 

these, and train a support-vector machine [10] from the 

collection. The theory of support vector machines is well known 

and need not be repeated here. Thereafter, for each test utterance 

that must be classified as being from the target language or not, 

we derive a 3M dimensional feature vector as described and 

classify it using the SVM. In our experiment we used a SVM 

with a linear kernel. 

6. Experimental Results 

We evaluated our proposed technique on two corpora: The 

CallFriend corpus available from the Linguistic Data Consortium 

(LDC) and the VoxForge multilingual dataset obtained from 

voxforge.org. The LDC data are quite noisy data and recorded 

over a telephone, whereas VoxForge data are comparatively 

clean in terms of background noise etc. 

 

6.1 System parameters 
 

Spectrograms were computed as log-magnitude short-time 

Fourier transforms with 25ms analysis windows and 6.25ms 

frame-shifts. For our experiments the temporal range used for the 

width of the patches was [0.1, 0.6] sec. The spectral range used 

was Fmax[0.1, 0.4], where Fmax is the highest frequency in the 

spectrogram. In all experiments, the patch dictionary was 

composed from positive speech examples from approximately 15 

minutes of data from the language to ensure good variability in 

terms of sounds present in the language. 

To train the SVM an additional 80min each of within-

language and out-of-language data were used. For all tests, 30 

minutes each of within-language and out-of-language data were 

used. In all experiments, the data were chopped into segments of 

no more than 10 seconds in length. It is therefore worth noting 

that all reported results are from segments of speech that are no 

more than 10 seconds at a time, and are often much shorter. 

 

6.2 Effect of dictionary size 
 

Since patch based features are crucial for our methodology, in a 

preliminary experiment we analyzed the effect of dictionary size 

on this language identification. Here we employed the LDC 

corpus and trained the classifier to detect English. All other 

languages were treated as negative instances. Results were 

obtained for different numbers of patches in dictionary. The 

number of patches extracted was varied from M = {300, 600, 

1000, 1500, 2000, 2500, 3000, 4000, and 5000}.  Figure 3 is a 

plot of EER (equal error rate) as a function of the number of 

patches. Clearly, as the dictionary size increases, error decreases 

and the performance of the classifier increases. In subsequent 

experiments we used a dictionary size of 4000 patches. 

 

 

6.3 LID results on CallFriend - LDC data 
 

In next experiment we used four languages from CallFriend- 

LDC corpus: English, German, Hindi and Farsi. We made 4 

SVM based binary classifiers, designed for detection of each of 

the four languages. 

For each language, patch-composition, training and test data 

were set up as described in Section 6.1.  For each language, the 

negative data were assumed to comprise the remaining 3 

languages. Data used to learn the patches were not used to train 

the classifiers. 

Detection Error Tradeoff (DET) is shown in figure 4, for 

patch based classifiers, for each of four languages. EER (equal 

error rate) for each of the 4 languages is tabulated in Table 1. 

Figure 2:Patches are correlated against the strip of the 

spectrogram from the same frequency range (the black 

rectangle). Peaks in the correlation indicate occurrences. Part 
of the image is taken from [6]. 

Figure 3:Equal Error Rate (%) vs. Number of Patches 



 

 

Language EER 
English 10.77% 

Farsi 11.32 % 

German 15.05 % 

Hindi 15.16 % 
 

 

The average EER over all the languages from the patch based 

approach is 13.1%. Campbell et al.[11] report an EER of 6.1% 

using shifted delta cepstral coefficients (SDCs) over 12 

languages from CallFriend, treating it however as a multi-class 

language ID problem, and using gender-specific models. Unlike 

Campbell et al., we perform detection, a more difficult task. Also 

we don’t require separate models for males and females.  

 

6.4 LID for different users speaking a particular language 
 

The VoxForge multilingual dataset includes speech examples for 

a number of users. We have taken English and Russian language 

data for this experiment. For this data we built a detector for 

English – we note however that since there are only two 

languages in the corpus, this reduces to a relatively simple binary 

classification task; nevertheless classification task: English vs. 

Russian does provide some additional information. Additionally, 

the test provides a measure of performance on broadband data, 

and is particularly useful since one of our test speakers had a 

distinctly non-native accent, thus giving us an idea of the 

consistency of spectral-pattern based classification across 

accents. 

 
 

 

Speaker EER 

kal_ldom  8.6% 

jmk_arctic 2.6% 

rms_arctic 5.1% 

arctic_Indian_accent 4.9% 

slt_arctic_female2 1.3 % 

 

 

The training data included 2 males and 1 female speaker with 

typical American accent. The test data included 3 male speakers 

(kal_ldom; rms_arctic; jmk_arctic) and one female 

(slt_arctic_female2)  speaker with typical American accent, and 

one male (arctic_Indian_accent) with Indian accent. Negative 

data, both for training and test had a number of speakers of both 

genders from the Russian language exemplars.  

The DET for the performance obtained with the patch-based 

system is shown in Figure 5. EER performance of the system 

over different speakers is tabulated in Table 2.  
 

7. Conclusions and Future work 
We present a novel language identification technique based on 

characterization of the relative frequency of occurrence of 

spectro-temporal patterns. Experiments show that this technique 

can provide competitive performance in comparision to the 

approach proposed by Campbell et al. [11]. Since both the 

approaches use entirely different kind of feature sets, the two 

could potentially be combined to get better results than either. 

We aim to improve the performance of our technique over 

the reported results. We have not investigated the optimization of 

spectro-temporal representations. Since a large number of 

patches have been used in this experiment, the features are 

expected to be redundant. Dimensionality reduction techniques 

may be employed to get better results. 

A particular feature of our approach is that it can work with 

very short segments of audio. Thus is a particularly promising 

tool to detect code switching. These, and the extension to multi-

class classification, are objectives of future work. 
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Figure 4: DET plots for 4 different languages: English, Farsi, 

German and Hindi, taken from CallFriend Corpus. 
 

Figure5: DET plots for 5 different English speakers. 

Table 1: EER performance of the systems on CallFriend Corpus 

Table 2: EER performance of the systems with different speakers, on 
the VoxForge multilingual dataset. 

 


