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Abstract

Sounds created by a periodic process have a Fourier rep-
resentation with harmonic structure – i.e., components
at multiples of a fundamental frequency. Harmonic fre-
quency relations are a prominent feature of speech and
many other natural sounds. Harmonicity is closely re-
lated to the perception of pitch and is believed to provide
an important acoustic grouping cue underlying sound
segregation. Here we introduce a method to manipulate
the harmonicity of otherwise natural-sounding speech to-
kens, providing stimuli with which to study the role of
harmonicity in speech perception. Our algorithm utilizes
elements of the STRAIGHT framework for speech ma-
nipulation and synthesis, in which a recorded speech ut-
terance is decomposed into voiced and unvoiced vocal
excitation and vocal tract filtering. Unlike the conven-
tional STRAIGHT method, we model voiced excitation
as a combination of time-varying sinusoids. By individ-
ually modifying the frequency of each sinusoid, we in-
troduce inharmonic excitation without changing other as-
pects of the speech signal. The resulting signal remains
highly intelligible, and can be used to assess the role of
harmonicity in the perception of prosody or in the segre-
gation of speech from mixtures of talkers.
Index Terms: speech synthesis, harmonicity, sound seg-
regation

1. Introduction
Human speech recognition is remarkable for its robust-
ness to background noise. Our ability to recognize
speech from mixtures with other sound sources sets hu-
mans apart from state-of-the-art speech recognition sys-
tems [1], which typically perform well in quiet but are
adversely affected by the presence of additional sound
sources. The robustness of human recognition to com-
peting sounds reflects our ability to segregate individual
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sources – to separate the sound energy produced by a tar-
get source from that produced by other sources [2].

Human sound segregation relies in part on acoustic
grouping cues – sound properties that are characteristic
of individual natural sound sources such as speech [3, 4],
and that can be used to infer groupings of sound energy
from a mixture of sources. Harmonic frequency relations
are believed to be among the most powerful of such cues.
Harmonicity is the frequency-domain analogue of the pe-
riodicity that characterizes many natural sounds, includ-
ing voiced speech. Periodicity produces frequency com-
ponents that are multiples of the fundamental frequency
(f0), a relationship known as harmonicity. Frequency
components that are harmonically related are generally
heard as a single sound with a common pitch, and mistun-
ing a single component of a harmonic series by as little
as 1% causes it to be heard as a distinct sound [5]. More-
over, two concurrent tones with different f0s are typically
heard as two distinct sources [6].

Machine systems that attempt to replicate human seg-
regation abilities also make use of harmonicity. Com-
putational auditory scene analysis (CASA) systems typi-
cally compute a measure of periodicity and f0 within lo-
cal time-frequency cells and then group cells in part based
on the consistency of the f0 estimates. CASA systems in
fact rely more strongly on harmonicity than common on-
set, the other main bottom up grouping cue believed to
underlie human segregation [7, 8].

Despite the widespread assumption that harmonicity
is critical to sound segregation, its role in the segrega-
tion of real-world sounds such as speech remains largely
untested. Given the potential importance of spectrotem-
poral sparsity in the segregation of natural sounds [9, 10],
it is conceivable that the most important role of harmonic-
ity could simply be to produce discrete frequency compo-
nents, the sparsity of which reduces masking and could
facilitate common onset and other grouping cues. More-
over, psychoacoustic experiments with artificial stimuli
have raised questions about whether harmonicity is in fact
critical for segregation. Mistuned frequency components
of complex tones can be detected even when the frequen-
cies of all components are increased by a fixed amount, or
when the complex is “stretched” such that adjacent com-



ponents are no longer separated by a fixed number of Hz
[11]. Although such tones are inharmonic (lacking a fun-
damental frequency common to all the components they
contain), component mistuning detection thresholds are
comparable to those for harmonic tones. This result sug-
gests that various forms of spectral regularity, rather than
harmonicity per se, could be most critical to segregation.

The strongest test of harmonicity’s importance in seg-
regation would arguably be to compare the segregation of
real-world sounds to that of inharmonic equivalents that
are matched in other respects. However, speech in par-
ticular is nontrivial to manipulate in this manner, as it
consists of an interaction of periodic and noise excitation
with vocal tract filtering to which humans are exquisitely
sensitive. We devised a method to generate inharmonic
versions of recorded speech utterances that selectively al-
ters the periodic component of excitation. We used the
framework of STRAIGHT, a powerful tool for represent-
ing and manipulating speech [12, 13].

2. Methods
Spectral envelopes (used to model vocal tract filtering)
were extracted by STRAIGHT from recorded speech
and were used to set the amplitudes of constituent time-
varying sinusoids (used to model speech excitation).
Conventionally, these sinusoidal components would mir-
ror the harmonics of the pitch contour. However, model-
ing the excitation in this way allows the frequency rela-
tions between sinusoids to be manipulated independently
of the spectral envelope or the prosodic contour, introduc-
ing inharmonicity into an otherwise normal speech sig-
nal. This section outlines the original STRAIGHT proce-
dure and its extension to enable inharmonic excitation.

2.1. Original STRAIGHT Framework

Spectral envelope estimation in STRAIGHT consists of
a two-stage procedure to eliminate interference from pe-
riodic speech excitation [13]. In the first stage, tempo-
ral interference is eliminated by averaging power spectra
calculated at two time points separated by half a pitch
period. In the second stage, spectral interference is elimi-
nated by spectral smoothing using an f0-adaptive rectan-
gular smoother, followed by post-processing to preserve
harmonic component levels based on consistent sampling
theory. These frequency domain procedures are imple-
mented with cepstral liftering. More details are provided
in [14].

Excitation estimation in STRAIGHT also relies on a
temporally stable representation of the power spectrum
and combines this with a temporally stable representa-
tion of instantaneous frequency [15]. Excitation is repre-
sented using a time-varying fundamental frequency f0(t)
(for the voiced, deterministic component of excitation)
and time-varying parameters to describe colored noise

(for the unvoiced, random component of excitation). The
original STRAIGHT framework synthesizes voiced ex-
citation with a sequence of pulses, with each pulse be-
ing the minimum phase impulse response of the esti-
mated vocal tract filter at that time point. Fractional pitch
control is implemented with a linear phase shifter. The
voiced and unvoiced components are combined using a
sigmoid function (defined by the boundary frequency be-
tween the voiced and unvoiced components, and a transi-
tion slope) [16].

2.2. Sinusoidal Modeling of Voiced Excitation

To permit the manipulation of harmonicity, the pulse-
based voicing synthesis of the original STRAIGHT pro-
cedure was replaced by a sum of multiple sinusoids. Our
implementation extends a previous instantiation of sinu-
soidal excitation modeling in STRAIGHT [17].

Let A(t, f) represent the amplitude at a time-
frequency location (t, f) of the spectral envelope esti-
mated using the STRAIGHT procedure. The determin-
istic (voiced) component s(t) of the sinusoidal synthesis
procedure can be defined by the following equation:

s(t) =
N(t)∑
n=1

A(t, fn(t)) cos
(

2π

∫ t

0

fn(τ)dτ +ϕn

)
(1)

where fn(t) represents the time-varying frequency of the
n-th constituent sinusoid and ϕn represents its initial
phase (set to zero for the experiments described here).
The total number of harmonic components N(t) at time
t is adaptively adjusted to keep the highest component
frequency below the Nyquist frequency.

Instead of directly implementing Equation 1, as in
[17], we approximate it here using a time-varying fil-
ter and a fixed frame-rate overlap-add procedure (3 ms
frame rate and 50% overlap between adjacent Hanning-
windowed frames). A linear phase FIR filter, derived
from A(t, f), is applied to each frame using a 1024 sam-
ple (64 ms) FFT buffer. This is essentially a cross synthe-
sis VOCODER framework, whose minimal restrictions
on the input signal make it straightforward to vary the
excitation. To synthesize speech, s(t) is added to the un-
voiced speech component estimated as in conventional
STRAIGHT.

2.3. Inharmonicity Manipulations

Following manipulations from prior psychoacoustics
studies [11, 18], we altered the frequencies of speech har-
monics in three ways.

• Shifting: the frequencies of all harmonics were in-
creased by a fixed proportion of the f0, preserving
the regular spacing (in Hz) between components.
Hence, the frequency of harmonic n became:

fn(t) = nf0(t) + af0(t) (2)



• Stretching: the frequency spacing between adja-
cent components was increased with increasing
component number:

fn(t) = nf0(t) + bn(n− 1)f0(t) (3)

• Jittering: a distinct random offset (uniformly dis-
tributed between -30% and +30% of the f0) was
added to the frequency of each component:

fn(t) = nf0(t) + cnf0(t) (4)

For comparison we also synthesized a substitute for whis-
pered speech, in which a low amplitude noise component
(26 dB below the level of the voiced component of the
regular synthetic speech, an amount that sounded fairly
natural to the authors) was added to the usual unvoiced
component in lieu of sinusoidally modeled voicing.

3. Results
Figure 1 displays spectrograms of one original speech ut-
terance and the synthetic variants that resulted from our
synthesis algorithm. It is visually apparent that the syn-
thetic harmonic rendition is acoustically similar to the
original, as intended. The inharmonic variants, in con-
trast, deviate in their spectral detail. Close inspection
reveals that the frequencies of the shifted inharmonic
version are translated upwards by a small amount in
frequency (such that the component frequencies are no
longer integer multiples of the component spacing). The
stretched and jittered versions lack the regular spacing
found in harmonic spectra, while the simulated whisper
lacks discrete frequency components. In all cases, how-
ever, the coarse spectro-temporal envelope of the origi-
nal signal is preserved by virtue of STRAIGHT’s speech
decomposition, and the unvoiced components in the orig-
inal speech, which are processed separately, are recon-
structed without modification. All synthetic renditions
remain highly intelligible, as can be confirmed by listen-
ing to the demos available online: http://labrosa.
ee.columbia.edu/projects/inharmonic/ .

Although much of the acoustic structure needed for
speech recognition remains intact, the inharmonicity that
results from the synthesis is readily audible. Unlike the
synthetic renditions that preserve harmonicity, the inhar-
monic versions do not sound fully natural, perhaps due
to weaker fusion of frequency components and/or the ab-
sence of a clear pitch during voiced speech segments. To
quantify the physical basis of this effect, we used Praat
to measure the instantaneous periodicity of each type of
synthetic signal for a large number of speech utterances
from the TIMIT database. As shown in Figure 2, the
periodicity histograms for both the original recordings
and their synthetic harmonic counterparts have a steep
peak near 1, corresponding to moments of periodic voic-
ing. In contrast, all three types of inharmonic signals
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Figure 1: Spectrograms of original and modified tokens
of the utterance ”Two cars came over a crest”. The fre-
quency axis extends only to 2 kHz to facilitate inspection
of individual frequency components.

lack strong periodicity despite the presence of discrete
frequency components. The simulated whisper synthetic
speech also lacks periodicity, as expected from noise ex-
citation.

Although the individual frequency components of the
inharmonic speech utterances trace out the same contour
shape as the components of the harmonic speech, the ab-
sence of periodicity impairs the extraction of an f0 con-
tour (in this case by Praat), as shown in Figure 3. The
f0 track for the harmonic synthetic version closely mir-
rors that of the original (note the overlap between blue
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Figure 2: Histograms of instantaneous periodicity for
recordings of speech utterances and different synthetic
renditions thereof. Data obtained from 76 randomly se-
lected sentences from the TIMIT database.
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Figure 3: f0 tracks extracted from an example original
speech utterance and its synthetic variants. The stretched
inharmonic version is omitted for visual clarity.

and black), but the inharmonic variants do not. Our sub-
jective observations suggest that many aspects of prosody
are nonetheless preserved in inharmonic speech, a topic
that will be interesting to explore experimentally.

The most exciting application of inharmonic speech
stimuli may be to the study of sound segregation. We in-
formally compared the ease of hearing a target speaker
mixed with competing talkers, for harmonic, inharmonic,
and whispered synthetic speech. Although definitive con-
clusions will require formal measurements over a large
corpus, our subjective impression was that harmonic
speech was somewhat easier to perceive in a mixture than
was inharmonic speech, with whispered speech notice-
ably more difficult than inharmonic. In some cases it
seemed that harmonic speech derived an advantage from
its pitch contour, which helps to sequentially group parts
of speech.

4. Conclusions
Inharmonic speech utterances can be synthesized using
a modification of the STRAIGHT framework. They are
intelligible but lack a clear pitch and sound less fused
than veridical harmonic speech. Inharmonic speech sig-
nals may be useful for the study of prosody and speech
segregation.
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