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Abstract
Can we model speech recognition in noise by exploring higher

order statistics of the combined signal? How will changes in these
statistics affect speech perception in noise? This study addresses
these questions in two experiments. One investigated the relation-
ship between an established ”glimpsing” model and the fourth or-
der statistic, kurtosis. The glimpsing model [1] proposes that lis-
teners can explore the local speech-to-noise ratio (SNR) in short
time segments (glimpses) and focus on areas where SNR is high.
Results showed that there is a very high correlation between per-
centages of glimpsing area and kurtosis (r = 0.99; p < 0.01),
suggesting that kurtosis can serve as a simpler index for measuring
glimpsing. The experiment also examined the association between
kurtosis and recognition of nonsense words (vowel-consonant-
vowel, VCV) in babble modulated noise, also showing very high
correlation (r = 0.97; p < 0.01). Another separate study focused
on the relationship of sparseness to speech recognition score for
VCV words in natural babble noise made of 100 people talking
simultaneously [2]. Results show that there is also high correla-
tion between kurtosis and speech recognition score with this noise.
Logistic regression analysis to obtain the kurtosis for 50% correct
showed this was achieved at a kurtosis of approximately 1.0.
Index Terms: sparseness, speech perception, kurtosis

1. Introduction
It is known that the auditory system has many extraordinary abili-
ties. One is the ”cocktail party effect”, where it can resolve many
talkers speaking at the same time. The other is the feature of au-
ditory filtering, which can be localized in both the time and fre-
quency domains. Many theories and models [3] have been devel-
oped trying to account these phenomena. Few of them can ex-
plain these capabilities fully. Signal processing methods mimick-
ing them by separating speech from noise have included informa-
tion theory based models, such as independent component analysis
(ICA). This sheds some light on these two important properties of
the auditory system.

ICA explores higher order statistic of signals and can almost
perfectly solve the instantaneous mixing problem, where two sig-
nals are mixed instantaneously (not convolved). This normally re-
quires as many microphones as sources. Although this is still far
from solving the practical cocktail party effect, it provides some
clues for understanding how the auditory system may separate
speech signals in this situation. Cooke [1] argues that listeners
can actually get a good understanding of speech in noise by taking
advantage time segments where the SNR is higher than the global
SNR: the short-term segments are referred to as glimpses.

The idea of glimpsing is based on the known sparseness and

redundancy of speech, either in noise or against competing speak-
ers. Speech signals are a highly modulated with many silences due
to physical constraints on the speech production system. There
tend to be many non-overlapped areas for speech mixtures when
examined in the time-frequency domain. One assumption is that as
the signal becomes more sparse, areas of clean speech increase and
hence more opportunities for glimpsing occur. Listeners would
then be able to reconstruct an accurate estimate of the whole
speech signal through these glimpses and the redundancies in the
speech. Cooke compared perceptual experiments of word (VCV)
recognition in babble modulated noise [1] and the glimpse areas
of these tokens. Results showed high correlation (r = 0.955) be-
tween the glimpse area of the VCV words and speech recognition
scores of normal hearing subjects. A close fit between this glimps-
ing model and the perceptual evaluation results was observed. It
proved that the area of glimpsing has a strong effect on the speech
perception score, indicating that the subjects can take advantage of
these areas for speech perception. It also suggests that the sparse-
ness of speech in noise is important for speech perception in ad-
verse environments.

There is also physiological evidence suggesting that sparse-
ness is a key principle for neurons to encode environmental images
and sounds. Everyday we receive large quantities of information,
and our sensory system must have evolved efficient coding strate-
gies to maximize the information conveyed to the brain without
taking too many neural resources. Field [4] has shown that recep-
tive field properties of simple cells in primary visual cortex pro-
duce a sparse representation. When this sparse representation is
used as a constraint to encode images, a set of localized and ori-
ented filters could be derived [5]. If applied to sound signals, a
set of time and frequency localized filters can be derived [6, 7, 8].
These studies confirm sparse coding principles [9, 10] and the im-
portance of statistics in neuroscience.

Based on the findings above it is reasonable to assume that,
for speech perception in noisy environments, signals with more
sparse structure will be easier to understand since it best fits the
physiological encoding principle and should have greater glimps-
ing area. It follows that it is desirable to quantify sparseness in
some way. Sparse speech signals necessarily have signal distri-
butions that have more extreme peaks than Gaussian signals, due
to the intermittency of production. A standard method to quantify
sparseness is to use kurtosis, the 4th moment of the signal.
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where r is the amplitude of signal, µ̄ is the mean and σ is the
standard deviation. For a Gaussian (non-sparse) distribution k =



0, whereas for non-Gaussian signals the kurtosis may be super-
Gaussian (k > 0) or sub-Gaussian (k < 0).

Note that kurtosis is a simple property of the signal and may
be computed much more easily than complex measures, such as
glimpsing. This would be an advantage in real-time signal pro-
cessing applications. The aim of the present study therefore was
to assess the usefulness of kurtosis as a measure of sparseness, by
examining its ability to predict speech recognition in noise.

2. sparseness optimization methods
Sparseness representation of data, means that the components of
the representation are only rarely significantly active. Such repre-
sentation is closely related to redundancy reduction and indepen-
dent component analysis (ICA). Redundancy reduction can nor-
mally be achieved by Principal Component Analysis (PCA), which
discards low-energy subspaces from highly dimensional data. ICA
explores transform which can make the output as independent as
possible. In this paper, the Projection Pursuit Algorithm was used
to get a sparser signal out of the mixture of signals. Projection
pursuit refers to the notion that the algorithm extracts the source
signals one by one. Projection refers to a direction, which is or-
thogonal to all of the transformed sources signals except the one to
be extracted (Ś). Thus the inner product of mixtures of the signals
and the unmixing matrix will produce one of the source signals.

2.1. The mixture

Sounds were mixed with babble noise by head related transfer
function [11]. The noise was from 0 degrees and speech was from
90 degree. (Zero degrees means that the noise is in front, and 90
degrees means that the signal is on the right of the ear.)

2.2. Project Pursuit Gradient Ascent

This algorithms was described in detail by Stone [12]. It was in-
troduced to separate two sounds by exploring sparseness of the
signals, expressed by kurtosis. The unmixing matrix only updates
when the kurtosis of the extracted signal is increasing; that is, only
when the output is getting more sparse. The preprocessing by
PCA (Principal component analysis) is also important; it makes
the mean zero and normalizes the variance of mixture to 1. This is
convenient for the calculation of kurtosis according to equation 1.
The new equation for kurtosis will be:

k = E[(W T X)4]− 3 (2)

The gradient of kurtosis for an extracted signal Y = XW T

will be:

k(w)′ = αE[X(W T X)3] (3)

where X is the mixture of signals, W is the unmixing matrix,
Y is the extracted signal. α is a constant, and set it to unity 1 for
convenience.

The unmixing matrix is updated by the gradient and old ma-
trix:

Wnew = Wold + k(w)′ (4)

And the unmixing matrix is normalized before the next itera-
tion:

Wnew = Wnew/|Wnew| (5)

Figure 1: Kurtosis as a function of the number of talkers in babble
modulated noise. 95% confidence interval is represented by the
box. The line in the box represents the median. Maximum and
minimum are indicated by the error bars.

According to equation 4, the kurtosis of the extracted signal
for each iteration will be higher than that of signals extracted in
the last iteration. A folder was created to save all the extracted
signals and select some with the required kurtosis as test signals
for experiment 2. The specific values of kurtosis were 0.32, 0.53,
1.08, 2.58, 4.

3. Experiments
Two experiments were performed to investigate the sparseness fea-
ture of speech and its relation to speech perception. The first ex-
periment compared data from a published study using VCV words
[1], in terms of glimpsing area, with the corresponding measure of
kurtosis. The former measure has been shown to predict speech
recognition scores accurately. The second experiment involved
fresh measurements to investigate recognition of VCV words in
babble noise, sorted with respect to the value of kurtosis in the
range of 0 to 4.

3.1. Glimpsing and kurtosis

3.1.1. Speech materials

VCV words in babble modulated noise were used. These were
the actual materials used by Cooke [1] and Simpson[13]. These
included sixteen consonants (b, d, g, p, t, k, m, n, l, r, f, v, s, z,
sh, tch) in the context of vowel /a/. The total test set includes 160
items from five male talkers and two examples of each talker were
used. The noise signal was created by multiplying speech shaped
noise with the long-term magnitude spectrum of the TIMIT corpus
for various N. Twelve babble noise conditions were employed, N
= 1, 2, 3, 4, 6, 8, 16, 32, 64, 128, 512, ∞. The noisy tokens were
the sum of speech-shaped noise and 12 noise conditions at a global
SNR of −6 dB.

3.1.2. Quantitative analysis of kurtosis

The kurtosis of each babble noise token as a function of N was
calculated. Kurtosis was calculated based on equation (1) in the
time domain of the each token. Fig.1 shows that kurtosis of the
signal decreases continuously with the increase of babble talkers



Figure 2: Correlation between kurtosis and glimpse area where
the local SNR exceeds 3 dB. The results are averaged across all
tokens and subjects. The correlation between kurtosis and glimpse
area is 0.993 (p < 0.01). A signal with greater glimpse area is
more sparse, with higher kurtosis.

N. It can be seen that spread of kurtosis is greater when there is
only one talker. Student’s t-test shows that there is no significance
difference for N > 16. This is also true for the glimpse areas as
observed in [1]. With the increase of N, the distribution approaches
the Gaussian distribution, as indicated by the decrease of kurtosis.

3.1.3. Relationship between glimpsing and kurtosis

Fig. 2 plots the mean glimpse percentage in each noise condition
against the corresponding kurtosis. The correlation is very high
(r = 0.993). Cooke [1] proposed that glimpse area is a good pre-
dictor for the speech perception in babble modulated noise. He
also found that the correlation between glimpse area and speech
recognition score is high (r = 0.955). Our analysis using Cooke’s
recognition scores and our measure of kurtosis also showed a high
correlation (r = 0.97; p < 0.01). These results suggest that kur-
tosis is a good predictor for glimpse area of speech tokens, and
further a larger glimpse area indicates that a signal is more sparse.

3.2. Investigation of speech recognition in babble noise

In order to further investigate the relationship between kurtosis
and speech understanding, new speech signals were produced in
five groups with different kurtosis. An experiment was then per-
formed with normal hearing subjects in a sound proof booth to
obtain speech recognition scores as a function of kurtosis. Fig. 3
and Fig. 4 show examples of the sound /asa/, with different kur-
tosis. The kurtosis of the signals from S1 to S5 increases as a result
of sparseness optimization.

3.2.1. Generation of speech and noise material

The set of 13 consonants b, d, f, g, j, l, m, n, p, s, t, v, z were used
in the vowel context of /a/. These were available in the Matlab
Nucleus toolbox, with single male talker. The babble speech noise
was obtained from [2], which is the sound of 100 people talking in
a canteen, with radius approximately two meters.

The speech and noise were mixed using a head related trans-
fer function [11] with noise from 0 degrees and speech from 90
degrees. In this original mixture the speech was unrecognizable.
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Figure 3: Example of kurtosis optimization for /asa/ sound in
noise. The kurtosis of signal is increasing with different steps from
S1 till S5. The waveform of each step is shown in Fig. 4
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Figure 4: Examples of /asa/ sound waveform as a result of sparse
optimization. From top to bottom, the kurtosis of the signal /asa/
are increasing (0.32, 0.53, 1.08, 2.58, 4), as shown in Fig. 3

To generate the signals required for the experiment, the kurtosis of
signals was progressively increased using an iterative algorithm as
shown in Fig. 3, by multiplying a matrix which updates according
to an optimization principle. It updates only when the kurtosis of
output increases. A series of signals were saved in a folder fol-
lowing each iteration and thus we produce a set of signals with in-
creasing kurtosis. This is also called a projection pursuit algorithm
[12]. Five groups of signals with different kurtosis were selected
from the saved folders: k = 0.38, 0.5, 1, 2.5, 4.

3.2.2. Subjects and procedure

Seven listeners (3 male, 4 female) participated in the experiment.
All had normal hearing. All listeners passed a pre-test on VCV
words recognition in quiet at a recognition rate of at least 97%.
The experiment took place in a sound isolated booth. Stimuli were
presented monaurally through a TDH-39 earphone. Each subject
completed five conditions with different kurtosis values. The ini-
tial 107 presentation for practice were not scored. Order of condi-
tions and tokens were both randomized.



Figure 5: Consonant recognition in natural babble noise as a func-
tion of kurtosis, including clean speech (k = 7.42). The distribu-
tion is wider when kurtosis is smaller. The x-axis, kurtosis, is on
log scale.

3.2.3. Results

Fig.5 plots the speech recognition score as a function of kurto-
sis, including clean speech. Speech recognition score and kurtosis
have a high correlation (r = 0.8, p < 0.01). This shows directly
that kurtosis is a good predictor for speech recognition in natural
babble noise. It also shows that the recognition score increases
very rapidly with the increase of kurtosis when the kurtosis value
is low. The increase in score gets slower when the kurtosis reaches
2.5, which indicate that there is a ceiling effect. The kurtosis of
the clean speech on average was 7.42. One-way analysis of vari-
ance (ANOVA) with post hoc comparisons of paired differences
showed that the speech recognition scores for different kurtosis
values were significantly different except for the pair k = 4, 2.5.

In order to further investigate the relation between the speech
perception score and kurtosis, a logistic regression curve was cal-
culated, as shown in Fig.6. The regression equation is:

P =
1

1 + e−(−0.80+0.81x)
(6)

The regression curve emphasizes that the speech recognition
score can be effectively predicted by the value of kurtosis, higher
kurtosis predicting higher score. To get a 50% correct score, the
kurtosis of such a signal should be no less than approximately 1.0.

3.3. Discussion

A signal with sparse representation can be considered to be bio-
logically efficient. Sparseness is a key factor for the natural envi-
ronment [5]. Our experiments have shown that kurtosis, a standard
way of measuring sparseness, is a good predictor for speech per-
ception in babble noise. These experimental results indicate that
the sparseness feature of speech can indeed be exploited by the
auditory system. Although this has been theoretically shown by
many studies [7, 6, 14, 15, 8], our experiments show that this could
be achieved by simply using the 4th order signal statistic, kurtosis.

Our study is limited to CVC words and could be usefully ex-
tended to other speech materials, such as sentences. According to
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Figure 6: Logistic regression to show the relationship between
speech perception and kurtosis. The observed recognition score
from the second experiment is plotted as ’asterisks’. The point of
50% correct occurs when kurtosis equals 0.99.

the central limit theory, a mixture of signals is always more gaus-
sian than each individual signal. So the kurtosis of the mixture is
usually smaller than that of individual sources. A sparser represen-
tation of the mixture signal with higher kurtosis, would be closer
to one of individual signals. And it would be easier for the speech
recognition in noise, even for different words other than CVC. For
sentences, there is the added complication of redundancy due to
syntax and meaning. Further psychoacoustic experiments should
be done to examine sentence recognition.

There are some shortcomings the way we have used kurtosis
for measuring sparseness. First, it is very sensitive to the outliers.
Considering equation (1), outliers may create significant changes
for kurtosis. Second, kurtosis was calculated in the time domain
only and focused on each CVC item as a whole. In the time-
frequency domain, sparseness can be more easily understood as
an indication of glimpsing areas where the SNR is high. However,
an advantage of using kurtosis is that the calculation is direct and
simple. A modified calculation could be used where the signal
is divided into different time intervals and calculation of kurtosis
could be based on a number of spectral regions. This might give
a better predictor by considering the time-frequency domain char-
acteristics of competing signals.

The kurtosis measure used in the present study can be cal-
culated very simply and is amenable to simple updating using a
sliding window. This makes it an attractive option for real-time
applications than require an estimate of sparseness or prediction
of speech recognition score. For example, kurtosis maximization
can form the basis of algorithms for enhancement of speech in
noise, such as used in modern digital signal-processing hearing
aids. Repeated calculation of kurtosis would be computationally
more efficient than more complex methods such as glimpsing.

3.4. Conclusion

Recognition of speech in babble noise is facilitated by sparse-
ness in overlapping of the competing signals and by redundancy in
speech. This sparseness can be represented simply by calculating
kurtosis, with greater kurtosis corresponding to greater sparseness.
This kurtosis measure is an effective predictor of speech recogni-



tion in babble noise, at least for vowel-consonant-vowel nonsense
words. It compares well with other more complex methods, such
as the glimpsing method. The simplicity of measuring kurtosis
suggests it may find application in real-time signal-processing al-
gorithms for the enhancement of speech in noise.
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