
Frequency Component Restoration for Music Sounds
Using Local Probabilistic Models
with Maximum Entropy Learning

Tomonori Izumitani, Kunio Kashino

NTT Communication Science Laboratories
3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan

izumi@eye.brl.ntt.co.jp, kunio@eye.brl.ntt.co.jp

Abstract
We propose a method that estimates frequency component struc-
tures from musical audio signals and restores missing components
due to noise. Restoration has become important in various mu-
sic information processing systems including music information
retrieval. Our method comprises two steps: (1) pattern classifica-
tion for the initial component-state estimation, and (2) state op-
timization by a generative model (Markov random fields; MRF).
Throughout the method, we use a probabilistic model defined for
each local region on a spectrogram. Unlike conventional MRF
models, the model parameters are learned using a maximum en-
tropy method. Experiments using artificial noisy sounds show that
a combination of the above two steps improves the performance
with respect to restoration accuracy and robustness, compared with
the sole use of pattern classification or a generative model. The
method achieves an F-measure greater than 0.6 even in periods
where signals are replaced by noises. In addition, the method is
shown to be effective even for audio signals of real instruments.

1. INTRODUCTION
Frequency components are time continuous peaks on a sound spec-
trogram such as a fundamental frequency (F0) component and its
overtones. Estimating frequency component structure is an im-
portant task for various music information processing systems, be-
cause the structure is an important property of the instrumental and
vocal sounds used in many music information processing systems,
including a melody and bass-line extraction system[1] and a mul-
tiple F0 estimation system [2].

However, the estimation is not straightforward because the
component structure in music signals can be easily broken by in-
terfering factors generated by, for example, percussive sounds or
noises. The restoration of such broken or missing components is
therefore essential for many musical information processing tasks.

In this study, we focus on the problem of estimating frequency
component structures from spectrograms of musical audio signals
with noise. In particular, we consider a case where some frequency
components are missing from musical audio signals due to noise.

Various methods that extract frequency components have been
developed for partial tracking tasks, e.g. methods using the
Kalman filter [3] and hidden Markov models [4], mainly in the
context of sound analysis/synthesis. Here, we specifically address
a case where the spectral peaks are intermittently hidden or erased
by noise or other irregular sounds.

The method proposed in this paper is based on the Markov

random field (MRF) [5] and the maximum entropy model (MEM)
[6]. That is, the model represents local characteristics on a sound
spectrogram by using a probabilistic model that is learned from
data using MEM and estimates the optimal states by a generative
approach [7].

However, a long time is needed for convergence and the es-
timation accuracy of the generative model is sensitive to initial
states. To cope with this, here we introduce a pattern classifica-
tion approach that reduces the number of iterations involved in the
model. When we combine the pattern classification approach and
the generative model, an initial state for the generative model is
given by the pattern classification scheme. This improves the ac-
curacy of the estimation and also reduces the calculation time.

Reyes-Gomez et al. proposed a method using probabilistic
models that can restore spectral powers when some regions on a
spectrogram are missing [8]. Our method is based on a learning
scheme and so does not require explicit transition models given in
advance. In addition, our method estimates frequency component
structures without prior knowledge of noise locations.

This paper is organized as follows. Section 2 defines the prob-
lem. Section 3 describes the proposed methods. Then, we present
our experimental results and discussion in section 4. Section 5
concludes the paper.

2. Estimating frequency component structure
Many musical sounds have frequency component structures, typi-
cally harmonic structures, that reflect the characteristics of instru-
ments or vocal mechanisms. These structures are represented as
peaks in the frequency direction extending in the time direction on
a sound spectrogram.

In practice, a musical sound may contain various kinds of tran-
sient and irregular components, as found with percussive sounds
and noises. In addition, the original instrumental or vocal sounds
themselves have irregular components such as those appearing at
the onset of a note. For simplicity, we treat these components as
noises in this study.

Noises are represented as irregular patterns on a sound spec-
trogram [Fig. 1 (A)]. When peak extraction is applied to such
signals, many transient power peaks are extracted simultaneously
[Fig. 1 (B)].

The objective of this study is to obtain frequency components
in a sound spectrogram of musical audio signals containing noise
[Fig. 1 (C-1), (C-2)]. Solely suppressing noise components is not
necessarily sufficient because information embedded in frequency



Figure 1: Estimation of frequency component structure. Spectrogram of musical audio signal (A), power peaks extracted from spectrogram
(B), a frequency component structure extracted from power peaks, where hidden frequency components are interpolated (C-1), and noise
is segregated from frequency component structure (C-2).

components is often hidden or erased by noises. Thus, we address
the restoration of these hidden or erased components. To deal with
both processes simultaneously, we consider the task as the estima-
tion of the optimal frequency component structure when a spec-
trogram is given. It is formulated as the followinga posteriori
probability maximization model: in

Θ̂ = arg max
ΘF,ΘN

P (ΘF,ΘN|X). (1)

In this formulation, we have introduced an auxiliary matrix
ΘN, which is also a binary state matrix that represents components
originating in noise, to reflect the difference between the genera-
tion mechanism of observationX with and without noise.

In this paper, we represent the elements of matricesX, ΘF,
and ΘN as xi, θF

i , and θN
i , respectively. Borrowing terminol-

ogy from image processing, we call each pair comprising a fre-
quency and time component, namely, a pointi on the spectrogram,
a “pixel”. The two kinds of states that are represented byΘF and
ΘN are called the “frequency component state” and “noise state,”
respectively.

In the rest of this paper, we use notationsΘ andθi to simul-
taneously represent two state matrices,ΘF andΘN, and their ele-
ments,θF

i andθN
i .

The problem to be solved involves constructing an appropriate
probabilistic model represented by eq. (1) and assigning an opti-
mal state that satisfies eq. (1) from four possible states, namely,
θF

i = 0/1 andθN
i = 0/1.

3. Method
3.1. Probabilistic models for microscopic characteristics

In order to build a probabilistic model that representsa posteriori
probability in eq. (1), we assume that the stateθi can be deter-
mined only by its neighborhood states and/or neighborhood obser-
vations.

This assumption is based on the following strong character-
istics commonly possessed by a spectrogram of a musical audio
signal: if a pixel is involved in a frequency component, neighbor-
ing pixels in the frequency direction tend to be excluded from any
frequency components while those in the time direction tend to be
included.

Therefore, the conditional probability of each pixel’s state can
be represented as follows:

P (θi|Θ\i,X) = P (θi|θj\i, xj , j ∈ Gi), (2)

whereGi denotes a set of neighboring pixels aroundi including

Figure 2: A neighborhood region around a pixel ati.

i itself, Θ\i denotes all elements ofΘ except forθi, andθj\i

denotesθj , (j ∈ Gi) except forθi.
In this study, we define the neighborhood as a rectangular re-

gion centered on the focusing pixeli, for simplicity (Fig. 2). The
widths of a neighborhood region in the frequency and time direc-
tion are represented bym andn, respectively.

We propose a method comprising two steps for estimatingΘ.
The first step is based on pattern classification; this means that the
probability ofθi is represented as a function of onlyxj , (j ∈ Gi).
We call this step “pixel classification.”

In the second step, the probability is represented as a probabil-
ity function using MRF [7], to find the optimum set of states by a
generative approach. Although each of the above two steps can be
used alone to estimateΘ, we find a combination of the two very
promising as discussed below.

3.2. Pixel classification

The first step, the pixel classification, assumes that the state for
every pixel is independent of each other. Therefore, probability of
eachθi in (2) can be written as

P (θi|θj\i, xj , j ∈ Gi) = P (θi|xj , j ∈ Gi), (3)

and joint probabilityP (Θ|X) is represented as a product of
P (θi|xj , j ∈ Gi) for all i.

The most probable state matrixΘ can be estimated only by
independently assigning a state that maximizes eq.(3) to each pixel
i. This process classifies all the pixels into one for four states.

Because of the difficulties involved in manually constructing
an appropriate probabilistic model, we utilize a supervised learn-
ing method to obtainP (θi|xj , j ∈ Gi) from training data.

Various supervised learning methods can be employed for
classification, including methods that have discriminant functions



in non-probabilistic forms. Of these, we adopt the MEM, which
can estimate a probability model. It is used for generative methods
as shown in the following subsection. The MEM is described in
detail in subsection 3.5.

Note that the less calculation is needed in this step than in the
following step, because this step needs only one calculation of a
conditional probability for each pixel.

3.3. Generative method using MRF

The pixel classification approach ignores relationships among
states of multiple pixels. This may generate less probable com-
binations of states, especially in circumstances where the spectral
peaks of frequency components disappear behind noises.

The MRF is a framework for representing the microscopic
characteristics of graphs [5] in the same form as the conditional
probability,P (θi|θj\i, xj , j ∈ Gi), used in this study.

In this formulation, the probability cannot be calculated with-
out determining neighboring states. Generative approaches are
commonly used for estimating the most probable set of states from
such a model. We use Gibbs sampling with simulated annealing as
is often used with MRF. It starts with an initialized set of statesΘI

and iteratively generatesθi according toP (θi|θj\i, xj , j ∈ Gi),
movingi and its neighborhood region. To find the states that yield
the maximum value of the multi-peaked function, the method in-
troduces the concept of “temperature”T (t) that decreases along
with iteration stept. We useT (t) = C/ log(1 + t) in accordance
with the original MRF study [5].

As the iterations proceed, the probability peaks gradually
sharpen if we regard the probability as a function proportional to
P 1/T (t).

Most MRF studies construct the probabilistic model by means
of “potential functions,” which adopt a small value for a state
configuration that occurs easily. The conditional probability
P (θi|θj\i, xj , j ∈ Gi) is represented as an exponential of the po-
tential function.

Usually, potential functions are manually defined based on
simple rules that reflecta priori knowledge about the objects.
However, it is difficult to design an appropriate function when we
use various features that pixels withinGi have.

To overcome this problem, we use a supervised learning
method, MEM, that directly estimatesP (θi|θj\i, xj , j ∈ Gi)
from training data [7]. Using the method, we can easily extend the
size of neighborhood regionGi, represented bym andn, without
manually redesigning the potential function.

Hereafter, we refer to this generative process simply as
“MRF.”

3.4. Combination of pixel classification and MRF

A disadvantage of the generative process in MRF is that it often
needs a long time for convergence. Moreover, an estimation is in-
fluenced by the initial state and it can be trapped in locally optimal
states.

This is largely due to incorrectly estimated neighboring pixels.
Thus, we want to avoid such a problem by finding an appropriate
initial state matrixΘI that is close to the optimal one.

For this purpose, we propose a combination method that con-
sists of the following steps:

1. Estimate a state matrixΘI by P (θi|xj , j ∈ Gi) trained by
the MEM (the pixel classification).

2. SetΘI as an initial state for Gibbs sampling in MRF.

3. Find local optimum states by applying Gibbs sampling with
C = 0.

C is a constant for the temperature scheduling functionT (t) =
C/log(1 + t). C=0 means statesθi that increase the probability
are accepted in the iterative process.

3.5. MEM

The MEM can directly estimate the posterior probabilityP (ω|D)
from training data. Here,D denotes a data sample andω a class
or category. In this study,ω corresponds toθi and each sampleD
corresponds to a pixeli on a spectrogram, which is characterized
by θj\i andxj , (j ∈ Gi).

To defineP (ω|D), multiple features are extracted for a given
D using feature functionsfl(D, ω), (l = 1, 2, ..., F ). Each func-
tion is defined by a combination of dataD and a classω, and it has
binary values (0/1).

In MEM, P (ω|D) is represented as

PΛ(ω|D) =
1

Z(D)
exp

 X

l

λlfl(D, ω)

!
, (4)

whereZ(D) is a normalization term andΛ = (λ1, ...λF ) are
model parameters.

The model parametersΛ are estimated so as to maximize
the entropy of joint probabilityP (ω, D) under the condition that
the expectations offl(D, ω) from P (ω|D) are equal toẼ(fl),
which is obtained simply by counting the number of cases where
fl(D, ω) = 1 in the training data, for alll.

Generalized iterative scaling (GIS) or the improved iterative
scaling (IIS) method, which are kinds of hill-climbing methods,
are commonly used to estimateΛ [6].

3.6. Defining feature function for MEM

Observationsxj , (j ∈ Gi) are used to define feature functions
fl for pixel classification. For MRF, neighboring states aroundi,
namely,θF

j\i andθN
j\i are used in addition toxj .

In preparation for definingfl, we introduce an auxiliary fea-
ture functiongl′(D), which also takes a binary value and does not
depend onω. In the following two subsections, we propose auxil-
iary feature functions for the pixel classifier and MRF.

3.6.1. Auxiliary feature function for pixel classification

For pixel classification, auxiliary feature functionsgl′ are defined
only by xj , (j ∈ Gi). Figure 3 (A) shows the procedure for ob-
taininggl′ .

First, we use spectral powersxj , (j ∈ Gi), which have real
values. For eachj, xj is quantized into on/off states ofB bins.
Namely, one ofB bins,x1

j , ..., x
B
j , is set at 1 according to the value

of xj and the rest are set at 0. For example, whenB=3 and 0.33<
xj <0.67, auxiliary feature functions(x1

j , x
2
j , x

3
j ) corresponding

to the three bins become(0, 1, 0), where everyxj is normalized to
0 - 1. Note that a feature function can only have a binary value in
the MEM.

Second, we introduce binary valuexp
j , which has a value of

1 if a pixel j forms a power peak in the frequency direction on
the spectrogram. This is introduced because spectral power peaks
provide rich information about frequency components, especially
in a clear sound without noise.



Figure 3: Making auxiliary feature functions (g1, g2, ...) from the
neighborhood region around a pixeli. (A) Auxiliary feature func-
tions for the pixel classification are extracted only by observation
matrix X. (B) For MRF, state matricesΘF andΘN are used in
addition toX.

We additionally introduce the negative¬xp
j , which corre-

sponds to eachxp
j . This value is used to keep the sum of all

fl(D, ω) in the training samples constant and thereby simplifies
the MEM learning using GIS.

This procedure yields (B+2)mn auxiliary feature functions.

3.6.2. Auxiliary feature function for MRF

For MRF, auxiliary feature functionsgl′ include information about
neighboring states excluding the state of pixeli, in addition to ob-
servations.

Figure 3 (B) shows auxiliary feature functions for MRF. A fre-
quency component state and noise state,θF

j\i andθN
j\i, (j ∈ Gi)

are used forgl′ in addition to functions defined for pixel classifi-
cation. The negative values,¬θF

j\i and¬θN
j\i, which correspond

to θF
j\i andθN

j\i, are also introduced as auxiliary feature functions
given for pixel classification. Consequently, 4(mn-1)+(2+B)mn
auxiliary feature functions are obtained.

3.6.3. Generate feature function

By using the above definitions, a feature functionfl = fωFωNl′
can be defined for all four combinations of frequency component
and noise states,ωF = 0/1 andωN = 0/1, using auxiliary feature

functionsgl′ as follows:

fωFωNl′(D, θF
i , θN

i ) =

(
gl′(D) if θF

i = ωF andθN
i = ωN,

0 otherwise.
(5)

4. Results and Discussion
We evaluated the proposed method described in the previous sec-
tion in terms of frequency component restoration accuracy. We
first checked each step of the method under controlled conditions
using artificially synthesized audio signals. Then, we applied the
method to musical phrases generated from real instruments.

4.1. Preparing training and test data from artificial sounds

Artificial sounds were synthesized for use as the ground truth for
the frequency component and noise state matrix. The ground truth
is needed for the MEM learning procedure and evaluation.

First, we prepared different tones for training and testing.
Sounds close to a sawtooth wave with ten harmonics were used
for training and those close to square wave with five harmonics
were used for testing. We then generated two different 3.5-sec
musical phrases using these sounds by connecting seven 500-ms
single notes for training and test data.

Next, for each musical sound, two parts of the original 3.5-sec
musical sound were replaced by 200- and 300-ms-long Gaussian
noises. The noise locations were different. With this procedure,
traces of frequency components entirely disappeared within the
noise regions.

All audio signals were sampled atFs = 11,025 Hz. To create
observation matricesX, sound spectrograms were generated using
short-time Fourier transforms (STFT). The window size was set at
1024. We tried four kinds of shift for the window,L = 128, 256,
512, and 1024.

The spectral power values in decibels were normalized into a
range of [0, 1] from the power of 100 neighboring components in
the frequency direction. These were used in composing the obser-
vation matrixX.

The ground truth of the frequency components was created
based on fundamental frequencies of the generated phrase and the
harmonics that each tone should have. The ground truth of the
noise components was created from spectral peaks within noise
periods and peaks not included in frequency components.

Throughout the experiments, we usedB = 3 for quantization
of spectral powers. It was chosen by preliminary experiments us-
ing the same data set as [7]. For the MEM learning, 15,000 pixels
in a spectrogram were randomly selected for eachL.

4.2. Evaluation of accuracy

We examined the performance of the method for the following four
experiment patterns:

1. Pixel classification (PC)

2. MRF withC = 1 for slow convergence (MRF1) [7]

3. MRF withC = 0 for fast convergence (MRF2)[7]

4. Combination of pixel classification and MRF (PC+MRF),

where each term in parentheses is an abbreviation of the corre-
sponding experiment. For MRF, we tried two kinds of convergence



Table 1: The number of pixels for various STFT window shifts
(L). Two columns labeled with “freq. c.” show the number of
pixels involved in the frequency components.

Window shift Whole period (3.5s) Noise period (0.5s)
(L) total freq. c. total freq. c.
128 150,822 1,470 23,085 225
256 75,411 735 12,312 120
512 37,962 370 6,156 60
1024 18,981 185 3,591 35

Table 2: The best estimation of frequency components in the noise
region for each experimental pattern. Values in parentheses denote
the F-measure for whole 3.5-sec periods.

L m n F-measure F-measure(PC+MRF)
PC 1024 3 7 0.66 (0.90) 0.64 (0.88)
MRF1(C=1) 1024 3 11 0.53 (0.84) 0.65 (0.88)
MRF2(C=0) 1024 3 11 0.51 (0.77) 0.65 (0.88)
PC+MRF 512 5 11 0.71 (0.88) -

rates that were controlled by a constantC of temperature schedul-
ing functionT (t). Initial statesΘI for both experiments MRF1
and MRF2 were randomly generated.

We tried various sizes of neighborhood region for all the ex-
periment patterns, namely,m=3, 5, 7, 9, 11 andn=3, 5, 7, 9, 11.

For generative processes in the experiments MRF1, MRF2,
and PC+MRF, the convergence was judged by the number of gen-
erated pixel states that were different from the previous iteration
step. We stopped the iteration if the number became less than 0.01
% of the total pixels.

Table 1 shows the total number of evaluated pixels and the
number of pixels that composed the frequency components within
the whole period of the test phrase and the periods where Gaus-
sian noises were added. Noise periods are defined if at least half
the samples within an STFT window originate in added Gaussian
noise.

The number of pixels that compose frequency components,
which are treated as positive patterns, constitute only about 1%
of the total pixels. In such cases, performance is often measured
by precision (P ) and recall (R), especially in information retrieval
tasks.

We adopt F-measure (F ) as an evaluation measure. It is de-
fined as the harmonic mean of precision and recall, and it takes a
value in the [0, 1] range. These measures are defined as

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P + R
,

whereTP , FP andFN denote the number of true positive, false
positive and false negative samples, respectively.

Table 2 shows the frequency component estimation perfor-
mance within the 0.5-sec noise region, with parameter values
yielding the best F-measure for each experimental pattern.

The best performance of all is obtained when the experiment
PC+MRF is used withL=512,m=5, andn=11. It achieves an F-
measure of 0.71, where precision is 0.90 and recall is 0.58. This
means that more than half the frequency components, which had
disappeared due to noise, were restored and 90% of the estimated
frequency components were actually correct.

The right column of Table 2 shows the performance of the
experiment PC+MRF using the same parameters with the corre-
sponding method. Also in these cases, the combination method
outperforms MRF and it yields almost the same performance as
pixel classification. This indicates that the combinatorial method
is robust with respect to parameter variation.

Figure 4 shows the performance obtained with various pa-
rameter settings aroundL=512,m=5, andn=11 which yields the
best performance. Figure 4 (A) shows the relationship between
STFT window shift (L) and F-measures. WhenL=128 or 256, F-
measure for every experimental pattern was suppressed at a low
level. In each case, the pixel size in the time direction is very
short, 12 ms and 23 ms, respectively. This indicates that the local
probability models are unsuitable when a neighborhood region is
small compared with the length of audio events such as a noise or
musical notes.

In Figure 4 (B) and (C), various sizes of neighborhood region
were employed. The tendency of the experiment PC/PC+MRF was
quite different from that of the experiment MRF1/MRF2. In par-
ticular, PC and PC+MRF were found to be very robust with respect
to variation ofn.

We observed the following characteristics throughout all the
experiments.

• The combination method (PC+MRF) worked much better
than the MRF based method as long asL andn were not
too small.

• The MRF generative process in the combination method
improved the estimation only by the pixel classification in
almost all cases.

• Estimation only by MRF (MRF1/2) was unstable for varia-
tions in the embedded parameters.

The only difference between the experiment MRF2 and
PC+MRF is the initial statesΘI in the generative process. This in-
dicates that the appropriate setting of the initial states for the MRF
generative process is practically essential and pixel classification
can estimate the initial state.

Appropriate initial state setting also reduces the number of it-
eration steps needed for convergence. When the parameters were
chosen asL=512, m=5, n=11, the experiment MRF1 took 279
steps, MRF2 18, and PC+MRF only 5 steps, while the computa-
tional cost for each step was identical for all three methods.

4.3. Application to real instrumental sounds

We also applied the proposed method to real instrumental sounds.
We chose acoustic sounds of piano, violin, flute, trumpet,
marimba, and alto (vocal) played with the normal playing style
from the RWC Musical Instrument Sound Database (RWC-MDB-
I-2001 No. 01-50) [9]. We then generated 7.5-sec musical phrases
with five short Gaussian noises, 1.1-sec in total, for each instru-
mental sound.

We defined the ground truth data from power peaks close to
the fundamental frequency and its harmonics that were expected
from the notes of the musical phrase.

The same experimental conditions and the same training data
as the previous subsection were used for the frequency component
estimations.

Table 3 shows the performance of each method when applied
to real instrumental sounds using two parameter sets: (A)L=1024,
m=5, n=7 and (B)L=512,m=5, n=11. In the table, F-measure
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Figure 4: Comparison of F-measure of four experimental patterns. (A) Changing shift width of STFTL wherem=5 andn=11. (B)
Effect of neighborhood region size in the frequency direction whereL=512,n=11. The notation is the same as (A) and (C). (C) Effect of
neighborhood region size in the time direction whereL=512,m=5.

Table 3: F-measure values for the restoration of the frequency
components in noise region using real instrumental sounds.

(A) L=1024,m=5,n=7
instrument PC MRF1 MRF2 PC+MRF

piano 0.35 (0.73) 0.34 (0.71) 0.34 (0.70) 0.38 (0.73)
violin 0.21 (0.55) 0.19 (0.53) 0.19 (0.52) 0.22 (0.54)
flute 0.26 (0.50) 0.28 (0.49) 0.23 (0.45) 0.26 (0.49)

trumpet 0.28 (0.52) 0.29 (0.50) 0.28 (0.49) 0.30 (0.51)
marimba 0.10 (0.26) 0.08 (0.22) 0.11 (0.25) 0.08 (0.24)

alto 0.15 (0.33) 0.13 (0.30) 0.08 (0.23) 0.13 (0.31)

(B) L=512,m=5,n=11
instrument PC MRF1 MRF2 PC+MRF

piano 0.24 (0.74) 0.19 (0.60) 0.10 (0.50) 0.32 (0.74)
violin 0.21 (0.60) 0.10 (0.44) 0.01 (0.25) 0.25 (0.59)
flute 0.18 (0.54) 0.11 (0.37) 0.07 (0.26) 0.23 (0.54)

trumpet 0.26 (0.58) 0.13 (0.39) 0.01 (0.23) 0.32 (0.56)
marimba 0.13 (0.29) 0.00 (0.11) 0.00 (0.11) 0.16 (0.30)

alto 0.09 (0.37) 0.06 (0.26) 0.05 (0.13) 0.12 (0.36)

values for noise regions (1.1 sec) are shown and those for whole
7.5 sec sounds are shown in parentheses.

The total performance degraded compared with experiments
using artificial sounds. This degradation occurred especially in
terms of recall values, which decreased by around 0.1 - 0.2, under
most conditions. This is because the method does not capture the
complicated frequency component structures possessed by a real
sound but not by the training data.

In Table 3 (A), similar results were obtained in each step of
the method. However, especially with piano and trumpet data, the
experiment PC+MRF achieved an F-measure greater than 0.3, al-
though these sounds were not included in the training data. Adding
real instruments’ sounds to the training data may improve the per-
formance.

Table 3(B) shows the results obtained under different condi-
tions. In contrast to the experiments MRF1/MRF2, which captured
very few frequency components, the experiment PC+MRF (and
PC) performed as stably as under the conditions of Table 3(A).

5. Conclusion
We have proposed a method that restores missing frequency com-
ponents from musical audio signals containing noise. The method

exploits probabilistic models that represent local characteristics on
a sound spectrogram. Specifically, the method features the com-
bined use of pattern classification and a generative model. Test
results showed that the combination method achieves better per-
formance than the single uses of the pattern classification or the
generative model from the viewpoints of restoration accuracy and
robustness. Future work will include the application of the pro-
posed method to real tasks such as music information retrieval and
signal restoration.
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