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Abstract
Most algorithms based on Computational Auditory Scene Analysis
(CASA) for binaural speech separation do not have the ability to
inhibit already localized and for a long time present sources in the
auditory scene. This has the major drawback that the auditory cues
of weaker and new sources are subject to interference from already
localized and perceived signals and the separation performance is
worse if the signals overlap in their processing domain. In this
paper we outline how one can build intuitively a separation sys-
tem that has this inhibition feature. The main block and starting
point of our derivation is a simple cross correlation based local-
ization system with two microphones. The inhibition is achieved
by feeding back localization results to a filter and sum structure
that cancels localized sounds. Interestingly, our intuitive approach
leads to a special case of a well known time domain blind source
separation algorithm which was derived from a statistical signal
processing viewpoint and exhibits good convergence even in rever-
berant environments. Finally, we discuss how the insights gained
from building a blind source separation this way can be used to
integrate CASA techniques.

1. Introduction
A common strategy of CASA based speech separation algorithms,
e.g. [1, 2, 3, 4] is to use time-frequency masks for the extraction of
different sound signals. The masks are derived from different audi-
tory cues, i.e. localization, pitch, and are applied to the incoming
signal in the time-frequency plane. The separation output is ob-
tained by converting the time-frequency representation to a normal
time domain signal. This processing achieves in general good and
robust results for strong and sparse non-overlapping sources, how-
ever it has problems dealing with weak and overlapping sources.
Annoying artifacts and no distinct separation are the consequences.

An alternative to overcome this lies in modeling the convo-
lutive mixing process of the sound sources. An inversion of the
model yields then the desired speech sources. This approach has
the advantage that in theory perfect separation is possible and no
musical artifacts occur. However, most known blind source separa-
tion algorithms and methods, e.g. [5], so far have problems with
strong reverberated sources and fail to separate sources sufficiently
as a huge number of mixing parameters have to be identified and
tracked over time.

A promising approach to speed up and regularize the parameter
estimation is to integrate techniques used in CASA systems into
the pure signal processing motivated algorithms. However, the
integration proves to be difficult as most blind source separation
algorithms are derived from abstract cost functions and the resulting

updates lack intuitive meaning or the meaning is hard to see in the
equations when derived this way.

Therefore, we will take a first step into this direction by show-
ing how to build intuitively a source separation system using two ba-
sic building blocks, i.e. source localization and inhibition. Tackling
the problem this way helps to structure the blind source separation
problem and offers insights in which parts of the processing block
speech signal properties and perceptual knowledge in general might
be helpful to increase performance.

2. Building Blocks
In this section the two building blocks of the system are described.
For their motivation and derivation we first assume the presence of
only one source. Later on we will lift this restriction.

2.1. Generalized Cross Correlation (GCC) & Localization

The key component of the system is the generalized cross correla-
tion as it provides reliable estimates for signal time delay between
microphones when only one speaker is active. The general defini-
tion of the correlation can be written as

ϕx1x2(l) = IDTFT
n

G(ejΩ)Φx1x2(e
jΩ)

o
(1)

where x1, x2 denote the two microphone signals, Φx1x2(e
jΩ) the

cross power spectrum of x1 and x2 and G(ejΩ) is a weighting
filter. In practice the above equation is replaced by a DFT and as
weighting filter G(ejΩ) = 1/|Φx1x2(e

jΩ)| is used to sharpen the
cross correlation function ϕx1x2(l). Eq. 1 describes then the so
called Phase Transform (PHAT) and reliable estimates for the time
delay ∆x1x2 can be obtained by maximization, that is

∆x1x2 = arg max
l
{ϕx1x2(l)} . (2)

Although designed for a free field signal model, the above method
also works in low reverberant environments [6] and we thus are
able to identify the relative delay of the main paths of both im-
pulse responses from the signal to both microphones and in direct
consequence the direction of arrival.

2.2. Inhibition of known directions

With this knowledge of the main path delay of one signal we are
now able to inhibit the signal by delaying and subtracting the mi-
crophone signals. Instead of detecting the delay once with the help
of the GCC ϕx1x2 between the two input signals x1 and x2, we
use feedback by considering the correlation ϕy1x2 between one
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Figure 1: Causal FIR inhibition system for localized speech. In-
stead of applying the cross correlation between the two signals x1

and x2 the correlation is now computed between the inhibited y1

and input signal x2. The benefit is that error feedback is used to
identify other cross path delays.

input, e.g. x2, and the suppressed output y1. Fig. 1 depicts the
situation. Only one speech signal s1(n) is active and received
by two microphones. Due to the spatial offset and echoes in the
room the signals xi(n) at the microphones can be written as con-
volution xi(n) = hi1(n) ? s1(n) where hi1 are the room impulse
responses from source 1 to microphone i. The inhibition is per-
formed by a FIR filter and sum structure with length 2L + 1. The
filter w11(l, n) = δ(l−L) is held constant such that a signal delay
of L taps for causal filtering is realized. Filter w12(l, 0) is initial-
ized at time n = 0 with all zeros and adapted according to the time
delay estimate ∆y1x2 of the GCC ϕy1x2(l) between the output of
the inhibition system y1(n) and the unprocessed received signal
x2(n):

wi+1
12 (l, n) = wi

12(l, n) + µ1 · δl−(L+∆i
y1x2

)ϕy1x2(∆
i
y1x2) (3)

The consequence of this adaption with step size µ1 is that the
system will suppress the detected main room impulse response path
by subtracting the correct aligned sensor signals x1(n) and x2(n).
A repetition of the update rule in Eq. 3, denoted by i, allows then
to explain and identify other prominent delays in the inter sensor
transfer function H̃21(z) = H11(z)/H21(z) that maps X2(z) to
X1(z) as the new correlation ϕi+1

y1x2(l) at step i + 1 takes place
between the inhibited/filtered signal

yi+1
1 (n) = x1(n− L)− wi+1

12 ? x2 (4)

and x2(n).

The above inhibition can therefore be interpreted as a channel
estimation method and works best on sparse channels. However,
we can also extend the method to adaptation of all taps when we
drop the maximum search and adapt all filter weights proportional
to the GCC. Of special importance in this case is the version with
the weighting function G(ejΩ) = 1/Φx2x2(e

jΩ) resulting in the
so called Roth processor which estimates the linear filter mapping
from x2 to y1 and provides therefore by itself an estimate of the
inter sensor transfer function H̃21 [7], which is then averaged and
refined through multiple iterations i. The complete formula with
DFT implementation of the cross correlation reads for the full
update

wi
21(n) = wi−1

21 (n) + µ2B · F−1
�
Φ̂y1x2 � Φ̂x2x2

�
(5)

where F−1 is an inverse FFT matrix of size N × N , � denotes
element wise division of vector elements and Φ̂y1x2 resp. Φ̂x2x2

are vector DFT estimates of the cross and normal power spectrum.
The shift & window matrix B of size (2L + 1) × N extracts the
needed filter coefficients from the longer inverse FFT vector by
swapping the FFT halves and shortening the correlation.

Through the inhibition we are now able to separate a later
impinging signal s2(n) from s1(n) as y1(n) was trained to cancel
s1(n) and thus contains only the other active signals which is in
this case only s2(n). Another positive effect of inhibition is that the
localization accuracy increases over time as the channel is estimated
more and more precisely. This is a great advantage in reverberant
scenarios in comparison to single snap shot localization systems
that integrate localization measurements with some model over
time and do not feed back information on the channel to refine and
correct their direction of arrival estimate.

3. Combining Blocks
For recovery of s1(n) we have to add another copy of the above
blocks to the system as shown in Fig. 2. Under the assumption that
the inhibition system for s1 has already converged, a good filtered
reference ys2

1 of s2,

y1(n) = ys1
1 (n) + ys2

1 (n) (6)
≈ ys2

1 (n) (7)
= w11 ? xs2

1 (n)− w12 ? xs2
2 (n) (8)

is available at the output y1. The superscript s2 denotes the por-
tion of the corresponding signal in the mixture signal. With this
reference we can then estimate parts or the full virtual linear cross
filter hRoth

y1y2 from y1 to y2 using the GCC method. For the Roth
processor we get in the frequency domain

HRoth
y1y2 (ejΩ) =

Φy2y1(e
jΩ)

Φy1y1(e
jΩ)

≈
Φy

s2
2 y

s2
1

(ejΩ)

Φy
s2
1 y

s2
1

(ejΩ)
(9)

where the last term can be obtained by using the fact that both sig-
nals are independent and the system has perfectly suppressed signal
s1 in y1. In practice a further ε is added to the denominator in Eq.
(9) to avoid division by zero. A closer look at the above equation
(9) shows that the cross correlation HRoth

y1y2 (ejΩ) can be interpreted
as virtual optimum channel estimation in the Wiener sense between
the filtered version of signal s2 in y1, i.e. ys2

1 , and the filtered
version at output 2, that is ys2

2 . The open question that remains
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Figure 2: Full 2x2 separation system. For better understanding the
upper part is assumed to have converged.



is how to use the mapping estimate hRoth
y1y2 = IDTFT

�
HRoth

y1y2

	
for the inhibition update rule. The answer is found from simple
algebra as the relationship of the virtual mapping filter hRoth

y1y2 can
be expressed in terms of all filters and signals:

hRoth
y1y2 ? ys2

1 = ys2
2 (10)

hRoth
y1y2 ? (w11 ? xs2

1 − w12 ? xs2
2 ) = ...

(w22 ? xs2
2 − w21 ? xs2

1 ) (11)

hRoth
y1y2 ? (w11 ? h12 ? s2 − w12 ? h22 ? s2) = ...

(w22 ? h22 ? s2 − w21 ? h12 ? s2) (12)

Rearranging terms for the unknown room impulse responses h12

and h22 yields then the desired inter sensor relationship in terms of
the known current demixing and virtual filters (hRoth

y1y2 ):

(w21 + w11 ? hRoth
y1y2 ) ? h12 = (w22 + w12 ? hRoth

y1y2 ) ? h22 (13)

(w21 +w11 ?hRoth
y1y2 )?h12−(w22 +w12 ?hRoth

y1y2 )?h22 = 0 (14)

The above equality can then be used to find the new optimum
separating solution wopt

21 , wopt
22 for the filters w21, w22.

ys2
2 = wopt

22 ? xs2
2 − wopt

21 ? xs2
1

!
= 0 (15)

= wopt
22 ? h22 ? s2 − wopt

21 ? h12 ? s2 (16)
=

�
wopt

22 ? h22 − wopt
21 ? h12

�
? s2 (17)

By comparing the terms in Eq. (17) with the ones in (14), as optimal
solution wopt

21 = w21+w11?hRoth
y1y2 and wopt

22 = w22+w12?hRoth
y1y2

is found.
In practice the mapping estimate is not exact as we have leakage

from signal s1 into y1, additional sensor noise and approximation
errors in the computation of the GCC, such that a direct computation
of the optimal coefficients is not robust. We therefore fallback to
our iterative step wise inhibition as introduced for the single signal
case (Eq. 3):

wi
21 = wi−1

21 + µ3 · wi−1
11 ? hRoth,i−1

y1y2 (18)

wi
22 = wi−1

22 + µ3 · wi−1
12 ? hRoth,i−1

y1y2 (19)

wi
11 = wi−1

11 + µ3 · wi−1
21 ? hRoth,i−1

y2y1 (20)

wi
12 = wi−1

12 + µ3 · wi−1
22 ? hRoth,i−1

y2y1 (21)

In comparison to the previous mentioned one signal case we also
relaxed the constant delay constraint on the diagonal filters w11,
w22. The reason for this is that we need a compensation for the
filtering introduced by the cross filters and adapting the diagonal
filters is the easiest way to solve this.

4. Relation to Other Approaches
An interesting finding when looking at the full update equations in
(18)-(21) is that the GCC hRoth

y1y2 with Roth weighting is the Wiener
filter that optimally tries to estimate y2 from y1. If we assume
FIR structure for the 2 · L + 1-tap filter, we can also compute its
equivalent time domain solution with correlation matrices:

hRoth
y1y2 = rT

y2y1R
−1
y1y1 , (22)

where ry2y1 is a 2 · L + 1 vector that holds cross correlation
values, i.e. ry2y1,i = E {y2(n)y1(n− L + i))} and the autocorre-
lation matrix with a 2 · L + 1 data vector y1

T = [y1(n) y1(n −

1) ... y1(n−2 ·L+1)] is defined as Ry1y1 = E
�
y1(n)y1(n)T

	
.

A comparison of our update with the above channel estimate in (22)
with the natural gradient update rule in Buchner et al. [8] (equation
31 on page 125) shows that both updates are structurally identical.
Furthermore, this finding sheds new light on the fast convergence
of the algorithm in comparison to other updates which result from
different cost functions. It seems that the good convergence results
from the fact that the virtual channel from y1 and y2 is estimated
in an “optimum” way and its adaptation is fastest when only one
signal is active as the inverse matrices scale the step sizes of the
corresponding inhibition filters. In addition the inverse matrices
can be interpreted as being responsible for removing time structure,
i.e. periodicity of voiced speech and correlation in speech over
time in general, from the normal cross correlation. This removal
is very beneficial for good convergence as periodicity in the cross
correlation leads to strong misadaptions in the demixing filters and
some time is needed for averaging out this effect.

A major open point of our intuitive approach so far was the
operation behavior at the beginning when neither system has con-
verged. With the above link that the robust natural gradient update
equations from the Buchner et al. system [8] can be related to
a special case of our system with the Roth processor, the same
reasoning as in [8] holds and the convergence analysis carries over.

Results on the convergence and performance of the single inhi-
bition block in section 2.2 are also available as the full inhibition
using the Roth processor (Eq. 5) can be identified as a block adap-
tive FIR filter. Youn et al. use the same structure for time delay
estimation of sonar signals and apply a sample by sample LMS
update [9]. In general the structure is known as Adaptive Noise
Canceler [10] and is often used for noise cancellation where a fil-
tered reference signal is available. If the constant delay assumption
on the direct filter w11(l) is dropped and also made adaptive, the
inhibition system resembles a SIMO blind channel identification
system and the filter coefficients can be updated by any algorithm
that exploits the cross relation among channels, see [11, 12, 13] for
details.

5. Simulations
In order to demonstrate the working principle of the building blocks,
we performed simulations with artificially convolved speech data
sampled at 16 kHz. As impulse responses a low demand scenario
with measured Head Related Transfer Functions of tap length 60
from the CIPIC database [14] was chosen. Finally, spatially uncor-
related white noise was added to the mixture, such that the overall
SNR is approximately 12 dB and 30 dB respectively. The GCC
was estimated with FFTs of size 2048, the total demixing filter
length L was 100 and the number of iterative refinements 10. After
one frame was processed the data was shifted 50 samples.

Fig. 3 compares the performance of full and main path inhi-
bition for a male speaker, cf. Eq. (3) and (5). The step sizes have
been chosen empirically and are µ1 = 0.003 (PHAT single tap) and
µ2 = 0.001 (Roth FFT, Roth TD). In order to avoid fluctuations
due to strong time structure in the cross correlation, divisions by
small values in the frequency domain are suppressed by adding
a small epsilon of 0.01 to the denominator in Eq. 9. In the time
domain update the inverse auto correlation matrix is regularized by
a diagonal loading of 0.01I. The effect of structure in the signals
on the system performance can be clearly seen in the performance
plot for the inhibition of one signal which measures the total energy
of the resulting filter a(n) from s1 to y1 at each processed frame



of length t = 0.128 sec, i.e. ||a||2 = ||w11 ? h11 − w12 ? h21||2.
At frame instances where only voiced speech is available, the adap-
tation is slow when unvoiced parts are present the channel can be
identified much more reliable. The performance of the full source
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Figure 3: Typical performance of the inhibition system for one
active speech signal in white noise SNR = 12 dB. The signals are
mixed with 60 tap HRTFs.

separation system is depicted in Fig. 4. The plot shows now the
Signal To Interference Ratio for each output yi with normalized
input signals si, i.e.

SIR1 =
var {ys2

1 }
var {ys1

1 } =
||w11 ? h12 − w12 ? h22||2

||w11 ? h11 − w12 ? h21||2
. (23)

A weighting with the power of the sources is omitted as both sources
have been normalized for the experiment. From the plot it is again
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Figure 4: Typical performance of the source separation system for
two speech signals in white noise SNR = 30 dB (µ1 = 10−4 and
µ2 = 8 · 10−4, update via Eq. 18). For convenience the same
speech signals have been repeated 4 times and two different step
sizes are shown

evident that the algorithm slows down and has even local problems
where the severity of the breakdown depends on the stepsize of the
update. To solve this problem better strategies for regularization
of the rank deficient auto correlation matrix in the time domain or

division by zero handling in the frequency domain are needed. The
overall separation quality of the system is however very good. Due
to the additive noise, only one speaker is audible and linear filtering
artifacts are small. The convergence is very fast if a suitable step
size is chosen, e.g. µ2 = 0.08.

To evaluate the performance in more realistic scenarios we
conducted a second experiment. The impulse responses are now
500 taps of measured responses between a loudspeaker and 3.5 m
apart microphones. The recordings took place in a normal room
(6 m × 4 m × 2.5 m ). In Fig. 5 results for channel estimation
in the presence of only one source are presented. The GCC is
estimated again with FFTs of size 2048, the total demixing filter
length L is now 600 and the number of iterative refinements 10.
After one frame was processed the data was shifted 512 samples.
Convergence is in this case much slower and occurs after 2 seconds.
The complete source separation system works also in this difficult
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Figure 5: Typical performance of the inhibition system for one
active speech signal in a reverberant environment (500 tap impulse
response).
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Figure 6: Typical performance of the source separation system for
two active speech signals in a reverberant environment in white
noise SNR = 30 dB (µ2 = 0.001, update via Eq. 18)

scenario as Fig. 6 shows. The overall performance is not as good as



for short impulse responses. However, a significant enhancement
of one target source in comparison to the other is achieved.

6. Discussion
Our intuitive source separation system has the ability to separate
sources. However, its performance depends on the number of mix-
ing parameters to be estimated and only in “low demand” scenarios
a “true” separation is possible. In order to achieve better results for
real reverberant environments, strategies are needed that improve
the recursive channel estimation in Eq. 9 which suffers from two
problems. The first is that the other unwanted signal, e.g. s1 leaks
into the output y1 and the transfer function estimation from ys2

1

to ys2
2 is impaired. The other problem is that the solution must be

regularized for non full-band signals, e.g. periodic sequences in
speech. In mathematical terms both problems can be seen when we
expand the Wiener filter exactly in (9):

HRoth
y1y2 (ejΩ) =

Φy2y1(e
jΩ)

Φy1y1(e
jΩ)

(24)

=
Φy

s1
2 y

s1
1

(ejΩ) + Φy
s2
2 y

s2
1

(ejΩ)

Φy
s1
1 y

s1
1

(ejΩ) + Φy
s2
1 y

s2
1

(ejΩ)
(25)

Leakage is identified in the terms Φy
s1
1 y

s1
1

and Φy
s1
2 y

s1
1

. Excitation
problems occur when the denominator approaches small values for
some frequencies Ω.

Having identified the problems, one can look for solutions with
the help of techniques known from Computational Auditory Scene
Analysis. CASA could for example come into play as it can be
used to identify only parts of the channel frequency response where
the energy contribution of the target signal is much higher than
that of the interference. Other parts of the frequency response are
not updated at this time step. When the signal ratios at different
frequencies change over time, the missing parts are updated. This
processing strategy is similar to the one of Nakatani et al. [15] who
uses partial time instance frequency response estimation for blind
single channel dereverberation.

7. Conclusions
An intuitive way to convolutive blind source separation has been
presented. Instead of deriving update equations from an abstract
cost function, the update rule was developed from source local-
ization and inhibition principles. Furthermore, it was shown that
the GCC and especially the Roth processor play an important role
in designing fast converging systems. With the new insight how
channel estimation between the outputs is linked to inhibition, a
promising way to improve convergence has been opened. The in-
troduced processing blocks structure the source separation problem
and a control and replacement of the algorithms can happen this
way more easily. We especially aim at integrating Computational
Auditory Scene Analysis (CASA) ideas into the system.
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