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Abstract capture something about the dynamics of speech by just looking

. . . at pair-wise relationships between the acoustic states ascribed to
We describe a system that can separate and recognize the S|multq-

dividual frames of speech data.
neous speech of two speakers from a single channel recording and1 P

b ; fth hat of h bi In addition to these low-level acoustical constraints, there
compare the performance of the system to that of human subjects ;¢ |ingyistic constraints that describe the dynamics of syllables,
The system, which we caltoquois, uses models of dynamics to

. : words, and sentences. These constraints depend on context over a
achieve performance near that of human listeners. However thelonger time-scale and hence cannot be modeled by pair-wise rela-

system exhibits a pattern of perfo_r mance across c_:onditions that istionships between acoustic states. In speech recognition systems
different from that of human subjects. In conditions where the g0y |ong-term relationships are handled using concatenated left-

amplitude of the speakers is similar, the Iroquois model surpassesto_right models of context-dependent phonemes, that are derived
human performance by over 50%. We hypothesize that the SYS-from a grammar or language model.

tem accomplishes this remarkable feat by employing a different Typically, models in the literature have focused on only one

strategy to that of the human auditory system. type of dynamics, although some models have factored the dy-
. namics into excitation and filter components [8]. Here we explore
1. Introduction the combination of low-level acoustic dynamics with high-level

Listening to and understanding the speech of two people when the>,gtramrtr1§tlcacljconstralnts. WetpoTnpalrg three.levelsccj)f dlynamléz con-
talk simultaneously is a difficult task and has been considered onets)_ra'? S: n]? ynaT'Cf' aclousdlc- eve yrllamllc(?, anda ay_ﬁ:e CO(T'
of the most challenging problems for automatic speech recogni- Ination ot acoustic-level and grammar-ievel dynamics. 1he mod-
tion. The ICSLP 2006 Speech Separation Challenge [1] gives usels are combined e}t the c_>bservat|on level using a nonlinear model
an opportunity to demonstrate the importance of temporal dynam-known as Algonquin, which models the sum of log-normal spec-

ics at an acoustic and sentence level, and to contrast the syster]:t{ umt_mo?els.d_lnfere_nce IO\?tthE%ate Cliz_avel |shcarr|ed out using an
performance to that of human subjetts. Iterative two-dimensional Viterbi decoding scheme.

Single-channel speech separation has previously been at- US"?g both acoustig and sentencg level dynamics our signal
tempted using Gaussian mixture models (GMMs) on individual separa.tlc_)n_ system, which we calbquais, produces remarka_ble
frames of acoustic features. However such models tend to per_results. it is often able to extract two utterances from a mixture
form well only when speakers are of different gender or have ever_}r\:vhen theﬁ/ aretfrom the same sdper;ﬁ:ﬁr. th ts:
rather different voices [3]. When speakers have similar voices, € overall Sysiem 1S composed ot the three components. a
speaker-dependent mixture models cannot unambiguously identifyspeaker identification and gain estimation component, a signal sep-

the component speakers. In such cases it is helpful to model thedration cpmponent, and a speech recognition sy§tem.
Section two and three describe the acoustic model and dy-

temporal dynamics of the speech. Several models in the literature - . . . .
have attempted to do so either for recognition [4, 5] or enhance- namics of the signal separation system. Section four describes the

ment [6, 7] of speech. Such models have typically been based on fpgaker identification and gain estimation system, sec;tion five de-
discrete-state hidden Markov model (HMM) operating on a frame- s_crlbgs the speaker-depeno_lent labeling (SDL) recognizer, and sec
based acoustic feature vector. tion six describes the experiments and results.

One of the challenges of such modeling is that speech con- . . .
tains patterns at different levels of detalil, that evolve at different 2. Acoustic Models and Likelihood
time-scales. For instance, two major components of the voice are Estimation
the excitation, which consists of pitch and voicing, and the filter,
which consists of the formant structure due to the vocal tract po- . . .
sition. The pitch appears in the short-time spectrum as a closely-11l€S that are mixtures of signals from two sourcesndb. .
spaced harmonic series of peaks, whereas the formant strucsure ha, 1€ model for mixed speech in the time domain is (omitting
a smooth frequency envelope. The formant structure and voicing he channely, =« + z; wherey, denotes the mixed signal at
are closely related to the phoneme being spoken, whereas the pitciMe ¢: We approximate this relationship in the log power spectral

evolves somewhat independently of the phonemes during voiceddomain as

segments. a _by _ . a b
At small time-scales these processes evolve in a somewhat plylx*, x7) = N(y;In(exp(x) + exp(x")), ¥) (1)

predictable fashion, with relatively smooth pitch and formant tra- \yhere ¥ is introduced to model the error due to the omission of
jectories, interspersed with sharper transients. If we begin with yhase and time has been omitted for simplicity.
a Gaussian mixture model of the log spectrum, we can hope to

The speech separation challenge involves recognizing speech in

) 2pudio samples and further information can be found at:
1We expand upon the conference version presented at ICSL6}200 http : //www.research.ibm.com/speechseparation




[1; N(x$; pus,s0,0% 50 ), Whereo? .. are the diagonal elements

a of covariance matrixs;«. The mapping)/;(s’) associates each

s of the D Gaussians with one of thé Gaussians in bangl. Now
i p(a]s®) =TI, N(z; uf_,Mf(sa%a?Mf(sa)) is used as a surro-
x gate forp(z®|s®).

KL-distanceD (p(z?|s*)||p(z*|s*)), and likewise fors®. Then in
each frequency band, ondiyx d, instead ofD x D combinations
of Gaussians have to be evaluated to compgges®, s°).
o o Despite the relatively small number of componediis each
(a) Combining GMMs (b) Simplified Model band, taken across bands, the model is in theory capable of ex-
pressingd” distinct patterns. In practice only a subset of the pos-
sible patterns match the Gaussians in a given model well enough
to achieve good results. In our case, we acheived good results with
d = 8 and D = 256. This saved over three orders of magnitude
of computation time over the exhaustive approach.
Another source of computational savings comes from the
sparseness of the model. Only a handfuk®fs® combinations

trum of the each source signal given their acoustic state ashave likelihoods that are significantly larger than the rest for a
gaussianp(x?|s®) = N (x%; jise, Sse ). given observation. Only these states are required to adequately

The joint distribution of the observation and source features €XPlain the observation. By pruning the total number of combi-
given the source states is: nations down to a smaller number we can speed up the likelihood
calculation, estimation of the components signals, as well as the
p(y, x%x%s% s")=p(y[x2x")p(x*s")p(x"|s"). 2 temporal inference.
. ) ) o ) . However, we must evaluate the likelihoods in order to deter-
Figure 1 depicts graphlcal models describing the relationships be-ine which states to retain. Therefore we use faster approxima-
tween the random variables of the feature layer of our speech sepyjons 10 initially estimate the likelihoods, followed by slower but

Sf
a xb s% Sb
\ / \ / Under this model thed Gaussians are chosen to minimize the
Yy Yy

Figure 1: Graphical models of the feature layer of our separation
system. In (a) all dependencies are shown. In (b) the source fea
turesx® andx® have been integrated out.

We model the conditional probability of the log-power spec-

aration system. more accurate methods after pruning. Trhax approximation
- . . [4, 10] provides an efficient approximation to the joint observa-
2.1. Likelihood Estimation tion likelihood. The max approximation assumesy|s®, s*) =

Unlike a traditional recognizer, we take into account the joint evo- P« (y|s®) if the meanu of z* is larger than the mean” of z°

lution of the two signals simultaneously. We therefore need to andp(y|s®, s”) = p,»(y|s”) otherwise.

evaluate the joint state likelihogey|s®, s°) at every time step. We relied on the max approximation for speaker identifica-
The iterative Newton-Laplace method Algonquin [3] can tion and gain estimation. For signal separation we used band-

be used to accurately approximate the conditional posterior quantization to perform state pruning, and then Algonquin method

p(x®,x"|s%, s*) from (2) as Gaussian, and to compute an ana- On the pruned states using the original un-quantized parameters. In

lytic approximation to the observation likelihopdy|s®, s°). The the experiments reported here, we pruned down to 256 state com-
approximate joint posterigs(x®, x°|y) is therefore a GMM and binations. T_he effect of the_se _speedup methods on accuracy will
the minimum mean squared error (MMSE) estimatbfs’|y] or be reported in a future publication.
the maximuna posteriori (MAP) state-based estimate”, s*) = ]
argmax,a_,» p(s®, s’y) may be analytically computed and used 3. Temporal Dynamics

. A b ; .
to IOI’I’J] an estimate ot” andx”, given a prior for the joint state |, 3 traditional speech recognition system, speech dynamics are
{s* 5"} captured by state transition probabilities. We took this approach

We used 256 Gaussians, one per acoustic state, to model the,q incorporated botacoustic dynamics andgrammar dynamics
acoustic space of each speaker. Dynamic state priors on thesg;, state transition probabilities.

acoustic states are described in section three. In this case, the com-
putation ofp(y|§“, s”) requires the evaluation @662 or over 65k 3.1. Acoustic dynamics
state combinations.
To capture acoustic level dynamics, which directly models the dy-
2.2. Fast Likelihood Estimation namics of the log-spectrum, we estimated transition probabilities
between the 256 acoustic states for each speaker. The acoustic
dynamics of the two independent speakers are modeled by state
transitionsp(sf,.1|s¢) andp(s?,,|s?) for speaker a and b respec-
tively, as shown in Figures 2(a) and 2(b). Hence, for each speaker
¢, we estimated &56 x 256 component transition matrix...

In order to speed up the evaluation of the joint state likelihood, we
employed bothband quantization of the acoustic Gaussians and
joint-state pruning.

One source of computational savings stems from the fact that
some of the Gaussians in our model may differ only in a few fea-
tures. Band quantization addresses this by approximating eac
of the D Gaussians of each model with a shared sei &faus-
sians, whered <« D, in each of theF frequency bands of = The grammar dynamics are modeled by grammar state transitions,
the feature vector. A similar idea is described in [9]. It relies p(vi,;|vf), which consist of left-to-right phone models. The le-
on the use of a diagonal covariance matrix, so fiat*|s*) = gal word sequences are given by the Speaker Separation Chal-

h’&Z. Grammar dynamics



3.3. 2-D Viterbi search

- 57 sfH - The Viterbi algorithm estimates the maximume-likelihood state se-
i i quences;. r given the observations; . The complexity of the
Viterbi search isO(T D?) whereD is the number of states arfd

Y Yt+1 is the number of frames. For producing MAP estimates of the 2

? ? sources, we require a 2 dimensional Viterbi search which finds the
b most likely joint state sequence$ - ands? . given the mixed

N ) -
=S¢ =St signaly, .1 as was proposed in [4].

On the surface, the 2-D Viterbi search appears to be of com-
plexity O(T'D*). Surprisingly, it can be computed (7' D?)
operations. This stems from the fact that the dynamics for each
chain are independent. It is easy to show, for example, how the
dynamics decouple in a forward inference algorithm:

(a) Acoustic HMM Combination

e (58— (55

a b
¢ ¢ p(sy, s¢lyi..e)
Yt Yi+1 = Z p(st]st_1)p(stlst—1)p(si—1, st_1ly1..e-1)
s¢_ysh_y
b) Cartesian Product Acoustic HMM
® = Z p(st|si—1) Z p(&?lﬁfﬂ)p(sgfh5271|y1..t71).
s{ 1 Sf_l
*”*(U“Ub)t% (Uavb)t_t,_]_”” Computing the inner sum take3(D?) operations and can be
stored inO(D?) memory, and the outer sum is of the same com-
i i plexity. The backward inference algorithm is of the same com-
B (SaSb)t — (SaSb)t_H B plexity. In general the forward-backward algorithm for a factorial
HMM with N state variables requires ondy(7'N DV *1) rather
l l than theO (T DY) required for a naive implementation [11].
n Yir1 In the _Viterbi algorithm, we wi_sh to find the most probable
paths leading to each state by finding the two argumeéhts and
(c) Grammar + Acoustic Model sb_, of the following maximization:

max  p(sy|st_1)p(si|si—1)p(st_1,st—1]y1.1-1)
5?715?71

Figure 2: Graph of acoustic HMM model for two sources. In (a),
the two state chains are shown separately. In (b)sthends® are ol a b1 b o b
combined into a Cartesian product stéés®). In (c) a Cartesian = Is%aXp(St |si-1) I:gaXp(St |st-1)p(si—1, 8{-1]y1.e-1)-
product of two grammars® andv” has been added on top of the o e

acoustic state sequence. Note that this makes the graphical mod

loopy. E‘l£or each state?, we first compute the inner maximum ovér_;

as a function ofs{_;, and store the max value and its argument.
Then we compute, for each statg and s?, the outer maximum
oversy_q, using the inner max evaluated«t ;. Finally, we look

| 11 and deled usi t of iati up the stored argumens}_,, of the inner maximization evalu-
enge grammar [1] and are modeled using a set of pronuncia 1ONS3ted at the max?_,, for each state? ands?. Again we require

that map from words to three-state context-dependent phone mod-O(Dg) operations withO(D?) storage for each step. In gen-

els. The sequences of phone states for each pronunciation, along 4 4 with the forward-backward algorithm, tNedimensional
with self-transitions produce a Finite State Machine (FSM) whose Vite,rbi search require® (TN DV +1) operation's

states we calprammar states. The state transition probabilities We can also exploit the sparsity of the transition matrices and

ggu\;?t?o;r%?;lgr;:SiI?:igg;?eezagreoSparse in the sense that most Sta‘t‘taf)bservation Iikelihoqu, by pruni_ng unlikely v_a1|ue§. Using _both of
' these methods our implementation of 2-D Viterbi search is faster
For a given speaker, the grammar of our system has 506 stateghan the acoustic likelihood computation that serves as its input,
v. We then model speaker dependent distributipfs$|v°) that for the model sizes and grammars chosen in the speech separation
associate the grammar states to the speaker-dependent acoustigsk.
states. These are learned from training data where the grammar
state sequences and acoustic state sequences are known for ea8t¥d. Methods of Inference

utterance. This combined model is depicted in Figure 2(c). In our experiments we performed inference in three different con-

To combine the acoustic dynamics with the grammar dy- ditions: without dynamics, with acoustic dynamics, and with
namics, it was useful to avoid modeling the full combination acoustic and grammar dynamics. Without dynamics the source
of s and v states in the joint transitiong(sf,|sf,v:). In- models reduce to GMMs and we infer MMSE estimates of the
stead we make a naive-Bayes assumption to approximate this asources based am(z®, 2°|y) as computed analytically from (2)
Lp(s§i1]s)p(siy1|vi1), wherez is the normalizing constant. via Algonquin as discussed in section 2.1.



In the acoustic dynamics condition, the exact inference algo- {6, 3,0, —3, —6, —9, —12} with prior 74, and m. is the prior
rithm uses the 2-D Viterbi search, with acoustic temporal con- probability of states in source clasg. Although not all frames
straintsp(s:|s:—1) and likelihoods from Eqn. (2), to find the most  are in fact dominated by only one source, such a model will tend
likely joint state sequence, . 7. to ascribe greater likelihood to the frames that are dominated by

In the grammar dynamics condition we use the model of sec- one source. The mixture of gains allows the model to be gain-
tion 3.2. Exact inference is computationally complex because independent at this stage.
the full joint distribution of the grammar and acoustic states, To form a useful estimate gf(c|y) we apply the following
(v x s%) x (v* x s°) is required and is very large in number. simple algorithm:

Instead we perform approximate inference by alternating the
2-D Viterbi search between two factors: the Cartesian prodet
s® of the acoustic state sequences and the Cartesian pratiuct
v® of the grammar state sequences. When evaluating each state
sequence we hold the other chain constant, which decouples its
dynamics and allows for efficient inference. ,

This is a useful factorization because the statesnds” inter-
act strongly with each other and similarly fot andv®. In fact, in plyle) = Z 9(by, () - by, (), ©)
the same-talker condition the corresponding states exhibit an ex- )

1. Compute the normalized likelihood efgiveny, for each
frame
by, (c) = p(y,le)/ D p(y,lc)- 4

2. Approximate the component class likelihood by

actly symmetrical distribution. The 2-D Viterbi search breaks this where ¢(by, (c)) is a confidence weight that is assigned

symmetry on each factor. Details of various alternative approxi- based on the structure df, (c), defined here as

mate inference strategies for this model will be explored in future

publications. $(by, () = { 1 maxcby,(c) >~ ©)
Once the maximum likelihood joint state sequence is found 0 otherwise

we can infer the source log-power spectrum of each signal and wherey is a chosen threshold.

reconstruct them as shown in [3]. 3. Compute the source class posterior as usual via:

4. Speaker Identification and Gain p(cly) < p(ylc)p(c)

Estimation This method for estimating(c|y) is useful in situations where

In the challenge task, the gains and identities of the two speak-there may be many frames that are not dominated by a single
ers were unknown at test time and were selected from a set of  source. In (5) the normalized likelihoods are summed rather than
speakers which were mixed at SNRs ranging from 6dB to -9dB. Multiplied, because the observations may be unreliable. For in-
We used speaker-dependent acoustic models because of their agtance, in many frames the model will assign a likelihood of nearly
vantages when separating different speakers. These models wergero, even though the source class is present in the mixture. The
trained on data with a narrow range of gains, so it is necessaryconfidence weighp(by, (c)) in (5) also favors frames that are well

to match the models to the gains of the signals at test time. Thisdescribed by a single component, that is, where the likelihood
means that we have to estimate both the speaker identities and theiby, (¢) is high for some component Frames that do not have this
gains in order to successfully infer the source signals. property might be misleading if they constitute an overwhelming

However, the number of speakers and range of SNRs in the Majority.
test set makes it too expensive to consider every possible combi-  Figure 3 depicts plots of the original spectrograms of the target
nation of models and gains. Furthermore we found that the optimal @nd masker speakers along with the normalized likelihdgds-)
gain, in the sense of maximum likelihood under our models, dif- Plotted as a function of, for a typical test mixture in the SSC two-
fered significantly from the nominal gains in the test set. Hence talker corpus. From the plots we can see that the likelihood func-
we developed an efficient model-based method for identifying the tions by, (c) are sharply peaked in regions of the mixture where
speakers and estimating the gains. one source dominates.

The algorithm is based upon a simple idea: identify and utilize ~ Given a short-list of finalists chosen accordingp@|y) as
frames that are dominated by a single source to determine whatcomputed above, we identify the present source components by
sources are present in the mixture. The output of this stage is a@PPlying the following max-based approximate EM algorithm to
short list of candidate speaker IDs and associated gain estimatesfind the gains and identify the most probable speaker combination:
We then estimate the posterior probability of combinations of these 1, E-Step: Comput;(s?, s¥|y,) for all ¢ using the max ap-

candidates and refine the estimates of their respective gains via an proximation (See section 2.2), in iteratigrfor a hypothe-
approximate EM procedure. In this EM procedure we use the max sis of speaker IDg andk.
?gdel of the source interaction likelihood mentioned in section M-Step: Estimateg, . via:

Tp identify frames dom!nated by a single source, we .model IR pi(s], s ly,) Yuen 037,k,d,t
the signal for each processing framas generated from a single A o5t sfisk 7 ka
source class, and assume that each source class is described by a 9ji = Qi J ok 1

R j i(Sty S ) p
mixture model: 2t 2t oy 5T, 2 1e) ZdeDsi\sﬁ ":{,sf,d
(@)
p(y.le) = ZZ”SC%N(yt?”sC +9, %) (3) whereAg; kae = Yar =ty o g = 9ii-1) » D 1S
g s t9t t15¢

all dimensions wherg ; , —gj,i—1 > Kk g = Gk,i—1, and
. . . . t? t?
where the gain parameter takes a range of discrete values «; is alearning rate.



6dB 3dB 0dB -3dB -6dB -9dB| All
0 ST | 100 100 100 100 100 99| 99
—20 SG | 97 98 98 97 97 96 | 97
DG | 99 99 98 98 97 96 | 98
All 99 99 99 98 98 97 | 98

frequency

-100  Table 1: Speaker identification accuracy (percent) as a function
of test condition and case on the SSC two-talker test set, for the
presented source identification and gain estimation algorithm. ST-
Same Talker, SG-Same Gender, DG-Different Gender.

° 5. Recognition using Speaker Dependent
= Labeling (SDL)

Once the two signals have been separated, we decode each of the
signals with a speech recognition system that incorporates SDL.

We employed MAP training [12] to train speaker dependent
-100  models for each of the 34 speakers. The Speech Separation Chal-
lenge also contains a stationary colored noise condition, which
we used to test the noise-robustness of our recognition system.
The performance obtained using MAP adapted speaker dependent
models with the baseline gender dependent labeling system (GDL)
and SDL are shown in Table 2. As we can see the SDL technique
(described below) achieves better results than the MAP adapted
system using oracle knowledge of the speaker id.

frequency

(b) Log Power Spectrogram of Masking Speaker (c=25)

5.1. Theory of SDL

Instead of using the speaker identities provided by the speaker ID
and gain module directly in the recognizer, we followed the ap-

source class

time proach for gender dependent labeling (GDL) described in [13].
Each speaker is associated with a sef,., of 39 dimensional
(c) Source class likelihoods, , (c) cepstrum domain acoustic Gaussian mixture models. At a par-
t

ticular time frame then we have the following estimate of ¢he
posteriori speaker probability given the speech feature

Figure 3: Plots of the (unobserved) spectrograms of the target and (colxe) Y ees, TN (%t pg, 2s)

masker speakers qnd the computed source class frame likelihoods plceXe Yo Daes, TN (e 1y, )

by, (c) (4), for a typical test utterance in the SSC two-talker corpus ¢

(mixed at 0 dB). From the plots we can see that the (normalized)  gp|_ does not make the assumption that each file contains only

source likelihoods are sharply peaked in regions of the mixture 5ne speaker, but instead assumes only that the speaker identity is

where one source dominates. constant for a short time, and that the observations are unreliable.
The speaker probability is thus averaged over a time window using
the following recursive formula:

def
Note that the probability of the data is not guaranteed to increase plet|x1e) = ap(ci-i|@re—1) + (1 —a)pleefxe)  (8)
at each iteration of this EM procedure even when= 1, be-
cause the joint state posteripr(s’, s*|y,) is not continuous in
gji andgy,;: the dimension assignmeil,;|,» changes depend-

for speakerc at timet, and wherex is a time constant. This is
equivalent to smoothing the frame-based speaker posteriors using
the following exponentially decaying time window.

s

ing on the current gain estimate. Empirically however, this ap-
proach has proved to be effective. ¢

pleelxie) = Z(l — ) plev|xy), 9)

Table 1 reports the speaker identification accuracy obtained brat

on the SSC two-talker test set via this approach, when all com-

binations of the most probable source and the six most probableThe effective window size for the speaker probabilities is given by
sources are considered (six combinations total), and the speaketr/(1 — «), and can be set to match the typical duration of each
combination maximizing the probabilility of the data is selected. speaker. We chose/(1 — «) = 100, corresponding to a speaker
Over all mixture cases and conditions on the SSC two-talker testduration of 1.5s.

set we obtained greater th@8% speaker identification accuracy Equation (8) can also be interpreted as forward inference in
overall. a model that consists of a probabilistic mixture of two conditions



at each time point. The first term corresponds to the assumptionthe DC component was discarded, producing a 319-dimensional
that the observatios; is unreliable and the speaker dd is the log-power-spectrum feature vector.

same as the previous time step. The second term corresponds to

the assumption that the observation is reliable and the spe:

¢, is independent of the previous time step. The valuepresen 100 2 Same Talker

the prior probability of each condition at each time step. St
system can be more robust than a system that simply assur
speaker is unlikely to change over time.

The onlinea posteriori speaker probabilities are close to |
form even when the correct speaker is the one with the hi 6dB ad8 ode a8 6B a8
probability. We can remedy this problem by sharpening the by Same Gender
abilities to look more like 0-1 probabilities. The boosted spe 100 ‘ ‘
detection probabilities are defined as

mee = pleex1)’ /Y p(ellxie)”. (10

6dB 3dB 0dB -3dB -6 dB -9dB
We usedB = 6 for our experiments. During decoding we ¢) Different Gender
now use the boosted speaker detection probabilities to give & 10 ‘ ‘
dependent Gaussian mixture distribution:

GMM(x;) = ) e, GMM.(x).

6dB 3dB 0dB -3dB -6dB -9dB

AS can be seen In Tablea 2 the SDI— SyStem OUtperformS the ’iNo Separation [ No Dynamics [___] Acoustic Dyn. [Hll Grammar Dyn. I:IHuman‘
systent.
System Noise Condition Figure 4: Word error rates for the a) Same Talker, b) Same Gender
clean 6dB 0dB -6dB -12dE and c) Different Gender cases. All results were decoded using the
HTK 10 457 820 886 872 SDL recognizer.

GDL-MAP | 20 332 686 854 873
GDL-MAP I 2.7 76 148 496 77.2

oracle 1.1 42 84 391 764 6dB 3dB 0dB -3dB -6dB -9dB total
SDL 14 34 77 384 773 ST 31 40 47 43 45 57 | 43.8

SG 9 9 10 12 14 23 | 129

DG 9 7 9 12 16 25 | 12.9

Table 2: Word error rates (percent) on the SSC stationary noisel All | 17.3 19.8 233 232 259 36.1 | 243

development set. The error rate for the “random-guess” system is
87%. The systems in the table are: 1) The default HTK recog- 146 3: \Word error rates (percent) for grammar and acoustic con-

nizer, 2) IBM-GDL MAP-adapted to the speech separation train- g qints ST-Same Talker, SG-Same Gender, DG-Different Gender.

ing datg_, .3) MAP-adapted FO. the speec_h separatior_l training OlataConditions where our system performed as well or better than hu-
and artificially generated training data with added noise, 4) Oracle .., listeners are emphasized.

MAP adapted Speaker dependent system with known speaker IDs,

5) MAP adapted speaker dependent models with SDL. Figure 4 shows results for the: a) Same Talker, b) Same Gen-

der, and c) Different Gender conditions. Human listener perfor-

) mance [1] is shown along with the performance of the SDL recog-
6. Experiments and Results nizer applied to: 1) the unprocessed mixed features, and the signals
obtained from the separation system 2) without dynamics 3) using
acoustic level dynamics, and 4) using both grammar and acoustic
level dynamics.

The top plot in Figure 4 shows word error rates (WER) for the

Same Talker condition. In this condition, two recordings from the

The Speech Separation Challenge [1] involves separating the
mixed speech of two speakers drawn from of a set of 34 speakers
An example utterance jdace white by R 4 now. In each record-

ing, one of the speakers saybite while the other sayblue, red

or green. The task is to recognize the letter and the digit of the ; . o .
speaker that saidhite. same speaker are mixed together. This conditions best illustrates

Using the SDL recognizer, we decoded the two component the importance of temporal constraints. By adding the acoustic

signals under the assumption that one signal contains white anqdynamlcs, performance is improved considerably. By combin-

the other does not, and vice versa. We then used the associatiof]'9 9rammar and acoustic dynamics, performange improves again,
that yielded the highest combined likelihood. surpassing human performance in th& dB condition.

Log-power spectrum features were computed at a 15 ms rate. The second plot in Figure 4 shows WER for the Same Gender

Each frame was of length 40 ms and a 640 point FET was used anocondition. In this condition, recordings from two different speak-
'~ ers of the same gender are mixed together. In this condition our

3No prior knowledge of the speaker ID or noise condition waesdlia system surpasses human performance in all conditions except
generating the results (save the oracle system). dB and—9 dB.




250

Word Error Rate (WER) relative to human performance

—O— Same Talker
—O— Same Gender
—&— Different Gender

200

e Human
w
=
s (1]
w
g
5 [2]
é
(3]
100 : : : :
6dB 3dB 0dB -3dB -6 dB -9dB
. . [4]
Figure 5: Word error rate of system relative to human performance.
Shaded area is where the system outperforms human listeners. [5]
The third plot in Figure 4 shows WER for the Different Gender  [6]
condition. In this condition, our system surpasses human perfor-
mance in the) dB and3 dB conditions. Interestingly, temporal
constraints do not improve performance relative to GMM without  [7]

dynamics as dramatically as in the same talker case, which indi-
cates that the characteristics of the two speakers in a short segmentg;
are effective for separation.

The performance of the Iroquois model, which uses both
grammar and acoustic-level dynamics, is summarized in Table 3.
This system surpassed human lister performance at SNRs of
dB to —6 dB on average across all speaker conditions. Averag-
ing across all SNRs, the Iroquois model surpassed human per{10]
formance in the Same Gender condition. Based on these initial
results, we envision that super-human performance over all condi-[11]
tions is within reach.

El

7. Discussion 1121

The absolute performance of human listeners is shown in Figure

4. As expected, human listeners perform well when the amplitude

of target speaker is considerably higher than the masker. Surpris-
ingly, human listeners also perform well when the target speaker [13]
is speaking at a lower amplitude than the masker. Human subjects
perform worst when the speakers are at a similar amplitude. Fig-
ure 5 shows the relative Word Error Rate (WER) of our system
compared to human subjects. The same general trend can be seen
all three cases (Same Talker, Same Gender and Different Talker).

machine listeners will provide us with a better understanding of the

differences in their performance characteristics. This may provide

insights into how the human auditory system functions, as well as

how automatic speech recognition can be brought to human levels
of performance.
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