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Abstract
Human listeners are able to understand speech in the presence
of a noisy background. How to simulate this perceptual ability
remains a great challenge. This paper describes a preliminary
evaluation of intelligibility of the output of a monaural speech
segregation system. The system performs speech segregation
in two stages. The first stage segregates voiced speech using
supervised learning of harmonic features, and the second stage
segregates unvoiced speech by subtracting noise energy that
is estimated from voiced intervals and onset/offset based seg-
mentation. Objective evaluation in terms of the match to ideal
binary time-frequency masks shows substantial improvements.
Tests with human subjects indicate that the system improves
intelligibility for young listeners when the input SNR is very
low, but does not aid elderly listeners. This preliminary evalu-
ation identifies aspects of the system that should be improved
in order to produce consistent improvement in intelligibility in
noisy environments.

Index Terms: speech segregation, computational auditory
scene analysis, ideal binary mask, supervised learning, on-
set/offset analysis, segmentation

1. Introduction
In real-world listening environments, speech reaching our ears
is often corrupted by acoustic interference. The human auditory
system segregates a target signal (e.g. speech) from an acoustic
mixture using various cues, including fundamental frequency
(F0), common onset and offset, and amplitude modulation, in
the perceptual process called auditory scene analysis (ASA) [1].
Computation auditory scene analysis (CASA) aims to achieve
sound organization based on perceptual principles [2]. The F0
or pitch cue is widely used in monaural CASA systems; how-
ever, systems that employ only this cue are limited to voiced
speech segregation. On the other hand, onsets and offsets (cor-
responding to sudden increases and decreases of signal energy)
can be used to segment both voiced and unvoiced speech [3].

Motivated by perceptual and computational considerations,
ideal binary mask (IBM) has been suggested as a benmark goal
for CASA evaluation [4]. The IBM assigns values of zero and
one in the time-frequency (T-F) domain by comparing the local
signal-to-noise ratio (SNR) within each T-F unit against a pre-
defined threshold using the source signals that are known a pri-

ori. Previous listening tests have shown that speech segregation
by IBM leads to dramatic intelligibility improvements [5, 6, 7].
Brungart et al. [5] tested IBM processed multitalker mixtures
and found that ideal binary masking leads to speech intelligibil-
ity improvements on the order of 22-25 dB for normal-hearing
listeners. Anzalone et al. [6] tested a somewhat different ver-
sion of IBM, constructed by comparing target speech energy
with a fixed threshold, and reported substantial perceptual im-
provements measured as the reduction in the speech reception
threshold (SRT) for both normal-hearing and hearing-impaired
listeners. A recent study by Li and Loizou [7] extended the
findings of Brungart et al. to different types of speech and in-
terference. They also tested the effects of deviation from IBM,
and reported that two types of mask errors - misses and false
alarms - yield different effects on speech intelligibility.

An IBM is constructed by comparing the sound sources be-
fore mixing them together, but in realistic settings, one has to
estimate IBM from mixtures directly. In this paper, we describe
a monaural speech segregation system that directly estimates
the IBM, and preliminary intelligibility tests of this system.
The proposed CASA system separates speech from background
noise in two separate stages. The first stage is designed to seg-
regate voiced speech, and the second stage segregates unvoiced
speech. In the first stage, our system computes a pitch-based
grouping cue from a set of harmonic features within each T-F
unit, where pitches extracted from premixed speech are used.
The transformation from harmonic features to the grouping cue
is performed by a multilayer perceptron (MLP) that is trained
for each channel of a gammatone filterbank. Voiced segrega-
tion lays the foundation for noise estimation, which is then used
in the second stage to separate unvoiced speech by spectral sub-
traction [8]. The second stage of our system also employs an
onset/offset analysis in order to further remove residual noise
that fails to be eliminated by spectral subtraction. An objective
evaluation shows that our system produces good estimates of
IBM. Preliminary intelligibility tests, conducted on both young
and elderly listeners, indicate that the algorithm works better
for young listeners than elderly listeners. In the case of young
listeners, the algorithm appears to improve intelligibility most
in low SNR condition.

The rest of the paper is organized as follows. The next sec-
tion gives a detailed description of our system. Objective and
subjective evaluations are presented in Section 3 and Section 4,
respectively. Concluding remarks are given in Section 5.
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Figure 1: Schematic diagram of the proposed two-stage CASA system. In the voiced-segregation stage, the system uses a set of
harmonic features to classify each T-F unit into target or interference. In the unvoiced-segregation stage, the system performs spectral
subtraction on noise estimate from the first stage. In addition, onset/offset based segmentation is employed for segment refinement.
The resulting time-frequency mask is then used to segregate the target speech.

2. System Description
Our two-stage segregation algorithm is illustrated in Figure 1.
The input to the system is a mixture of target speech and back-
ground noise. To extract acoustic features, the input mixture
is first analyzed using an auditory front-end, which models
cochlear filtering and neural transduction. Cochlear filtering is
performed using a standard filterbank [9] with 128 frequency
channels whose center frequencies are quasi-logarithmically
spaced from 50 Hz to 8 kHz. Each channel output is processed
by the Meddis model of hair cell to simulate auditory nerve
transduction [10]. The output from the Meddis model is divided
into 20-ms-long time frames with 10 ms overlap between neigh-
boring frames. The resulting representation is called a cochlea-
gram, and is a first order model of the input signal received
by the human auditory system. See [2] for details of cochlea-
gram analysis and synthesis. The envelope of each cochleagram
channel is extracted using a bandpass filter (passband from 50
Hz to 550 Hz). The two main stages of the CASA system are
described in the following two subsections.

2.1. Voiced speech segregation

In the voiced-speech-segregation stage, an MLP is trained for
each frequency channel using a set of noisy utterances. The
trained MLP then decides whether the local SNR within a T-
F unit exceeds a particular threshold [11]. Specifically, within
each T-F unit we extract a vector of harmonic features as the
input to the MLP.

Following [11, 12], a 6-dimensional feature vector is ex-
tracted to represent the harmonic structure of the T-F unit of
frequency channel c and time frame m in voiced intervals (sets
of consecutive voiced frames):

xc,m =




A(c, m, τm)[
f̄(c, m) · τm

]
∣∣∣f̄(c, m) · τm − [

f̄(c, m) · τm

]∣∣∣
AE(c, m, τm)[
f̄E(c, m) · τm

]
∣∣∣f̄E(c, m) · τm − [

f̄E(c, m) · τm

]∣∣∣




, (1)

where τm is the pitch period for frame m. A(c, m, τm) is the
autocorrelation of the front-end response with time lag τm and

AE(c, m, τm) is the envelope autocorrelation of the response.
f(c, m) denotes the estimated average instantaneous frequency
of the unit response, and fE(c, m) its envelope. [·] denotes the
round-to-integer operation. The first three features are extracted
from auditory front-end responses, and the last three features
from the envelopes of the front-end responses. Each set of three
features captures the periodicity, harmonic number, and devia-
tion from the nearest harmonic, respectively for one T-F unit.

Given the feature vector, we train an MLP for each channel
to directly maximize the SNR of segregated speech using the
following objective function

Jc = Σm(dc(m)− yc(m))2 · Ec(m)/ΣmEc(m), (2)

where Ec(m) denotes the energy at frame m and channel c,
and dc(m) and yc(m) the desired (binary) and actual outputs.
It is worth mentioning that Jc is a generalized form of mean
square error, with each error term weighted by the normalized
energy within the corresponding T-F unit. In implementation,
we generalize the Levenberg-Marquardt backpropagation algo-
rithm [13] to minimize Jc.

All the MLP’s have the same architecture, with one hidden
layer of 20 nodes. During MLP training, IBM provides the de-
sired output. Our informal listening indicates that, when the
mixture SNR is below zero, the IBM created using a local SNR
criteria (LC) [5] that is equal to the mixture SNR seems to pro-
duce better intelligibility than fixing LC to 0 dB. Thus, in IBM
construction we choose LC to be 0 dB when the mixture SNR
is greater than or equal to 0 dB and equal to the mixture SNR
when the latter is less than 0 dB. Each trained MLP is then used
to label only the T-F units of its corresponding channel in voiced
intervals. A T-F unit is labeled as target speech if the posterior
probability that the unit contains relatively strong target energy
is greater than the posterior probability that the unit contains
relatively strong interference energy.

2.2. Unvoiced speech segregation

Because the feature vector in (1) encodes harmonic structure, it
cannot segregate unvoiced speech. The second stage of our sys-
tem deals with the unvoiced speech segregation problem from a
different perspective. Specifically, we estimate the interference
within voiced intervals by capitalizing on the results of the first



Table 1: SNR gain (in dB) of the proposed system across four SNR conditions

Mixture SNR Voiced speech SNR gain Unvoiced speech SNR gain Overall SNR gain
-2 10 19.5 12.2
-4 10.4 20.7 12.6
-6 10.9 21.7 13
-8 11.5 22.5 13.6

stage [12], and then apply spectral subtraction to remove inter-
ference during unvoiced intervals, hence segregating unvoiced
speech. Specifically, the system first estimates noise energy for
each channel from the previous voiced interval by averaging
mixture energy in the T-F units labeled as interference in the
first stage; if such a voiced interval does not exist (which can
happen at the beginning of an utterance) the succeeding voiced
interval is used for noise estimation. Given estimated noise en-
ergy, we estimate the local SNR in each T-F unit in the current
unvoiced interval. A T-F unit is labeled as target speech if and
only if its local SNR is above LC.

We find that just applying spectral subtraction still retains
many T-F units dominated by interference. To further remove
residual noise after subtraction, we employ multi-scale on-
set/offset based segmentation [3] to refine the results from spec-
tral subtraction. To conduct onset/offset based segmentation,
we first detect onsets and offsets in each frequency channel. We
then align detected onsets neighboring in frequency and close
in time to form an onset front; detected offsets are aligned to
form an offset front. A segment is extracted from a matching
pair of onset and offset fronts. The final set of segments is pro-
duced by integrating over several analysis scales. This set of
segments is then compared with segments produced by simply
merging neighboring T-F units labeled by spectral subtraction.
If a subtraction-based segment overlaps with an onset/offset
based segment so that at least 90% of the latter energy is con-
tained in the overlapping region, the subtraction-based segment
is kept; otherwise, it is removed. This segment refining serves
to remove isolated fragments that likely belong to background
noise.

3. Objective Evaluation
In this section, we evaluate our system on mixtures of IEEE sen-
tences embedded in matched speech-shaped noise (SSN) [14].
The IEEE sentence corpus contains 720 phonetically-balanced
sentences with relatively low word-context predictability. All
sentences were recorded by a single female speaker at a 20 kHz
sampling frequency. We downsample the signals to 16 kHz.
Mixtures of the IEEE sentences and SSN are created at four
SNR conditions (-2 dB, -4 dB, -6 dB, and -8 dB) in order to
match the test conditions of perceptual tests (described in the
next section). In each SNR condition, 100 mixtures are used for
MLP training and the remaining 620 are used to evaluate sys-
tem performance. Feature extraction requires the knowledge of
F0 at each frame, so we use pitch contours extracted from pre-
mixed speech utterances using Praat [15] in order to remove the
influence of pitch estimation errors on segregation performance.

Given that the computational objective of our proposed sys-
tem is to estimate IBM, we adopt the same SNR measure in [16]
and use the resynthesized speech from the ideal binary mask as
the ground truth

SNR = 10log10(ΣnS2
I [n]/Σn(SI [n]− SE [n])2) (3)

Figure 2: SNR gain comparison for the proposed system in
unvoiced intervals with and without segment refinement.

where SI [n] and SE [n] are signals resynthesized from IBM and
the mask estimated by our segregation system, respectively.

Table 1 summarizes the performance of our system in terms
of SNR gain at different input SNR levels. We report the results
of voiced speech segregation only (the first stage), unvoiced
speech segregation only (the second stage) and then the entire
system in the table. Our system obtains an overall SNR gain of
13.6 dB when the input SNR is -8 dB. The gain drops slightly
to 12.2 dB when the input SNR is increased to -2 dB. Although
the voiced segregation performance is measured within voiced
intervals only, it is a little lower than the overall segregation per-
formance, presumably because the input SNR’s in voiced inter-
vals are higher than in unvoiced intervals. Thus, SNR gain tends
to be smaller as the input SNR increases. On the other hand, the
SNR gains in unvoiced intervals are significantly higher than
the overall SNR improvements.

To isolate the effects of segment refinement using on-
set/offset based segmentation, Figure 2 shows the SNR gain in
unvoiced intervals with and without segment refinement follow-
ing spectral subtraction. As shown in the figure, onset/offset
segmentation is responsible for a substantial amount of SNR
improvement.

Li and Loizou [7] observed that intelligibility score drops
gradually as the percentage of wrongly labeled T-F units in-
creases. Motivated by their results, we further evaluate our sys-
tem performance in terms of error percentages in unit labeling.
First, the overall percentage of mask error is calculated as the
average error rate per frame, counting flips from 0’s to 1’s and
from 1’s to 0’s, relative to the IBM. These error rates are given
in Table 2. Second, the two different types of possible error
– misses and false alarms – have been shown to have different



Table 2: Error rates (in %) produced by the proposed system in
estimating IBM

Input SNR Miss error False alarm error Overall error
-2 dB 25.61 4.26 7.82
-4 dB 29.72 4.19 8.87
-6 dB 34.98 4.11 10.15
-8 dB 39.30 4.07 11.35

impacts on speech intelligibility [7]. Therefore, we examine the
two types of error separately. Specifically, the miss error is cal-
culated as the per-frame average percentage of target units (1’s)
wrongly labeled as interference (0’s), the false alarm error is de-
fined as the per-frame average percentage of interference units
wrongly labeled as target. Rates of these two types of error are
shown in Table 2. Notice that the overall error in [7] is created
according to a pre-defined percentage, and thus has zero vari-
ance. We have further analyzed the error histogram and found
that more than 95% of frames have mask error rates lower than
20%. In comparison with the overall rates of representative
speech enhancement systems [7], our algorithm achieves con-
siderably lower error rates across all SNR conditions. Also, our
system makes more miss errors than false alarm errors. It has
been shown that miss errors are more benign than false alarm
errors for speech intelligibility [7].

According to the relationship between overall error and in-
telligibility observed in [7] for IEEE sentences mixed with SSN,
one would predict that the proposed system should lead to sig-
nificantly higher intelligibility over no processing.

4. Preliminary Intelligibility Tests
4.1. Methods

4.1.1. Stimuli

Test signals were created as described in Section 3. For each test
sentence and each mixture SNR level, two test stimuli were gen-
erated: a segregated mixture that is the output of our system and
an unsegregated mixture. To account for filtering effects and
any possible distortion introduced during cochleagram analy-
sis and synthesis, an input mixture in the unsegregated case is
processed through an all-1 mask.

4.1.2. Subjects

Subjects were recruited at the Speech and Hearing Research
Lab of the VA Medical Center in Martinez, California. One
group of five young listeners (between 21 and 33 years of age)
and another group of four elderly listeners (between 76 and 83
years of age) participated in the preliminary tests. All young
subjects had normal hearing (pure tone thresholds under 5 dB
HL [hearing level] between 0.5 and 4 kHz). The elderly sub-
jects had mild-to-moderate hearing loss (0.5 to 4-kHz pure tone
average thresholds between 12 and 39 dB HL in the better ear
and between 12 and 41 dB HL in the worse ear); none of the
subjects had ever used a hearing aid. Since the presentation was
diotic, the effective HL of each subject should be regarded as
that of the better ear.

4.1.3. Procedure

Subjects were seated in a sound-attenuated booth and listened to
the material presented diotically through earphones (Sennheiser

HD-580). Segregated utterances were presented through a
GINA-24 subsystem, which are peripherals of experimental
PC’s, at a comfortable listening level (both the average level of
unsegregated mixtures and the average level of vowel segments
of segregated mixtures were presented at a fixed level of 72 dB
SPL at the earphone). The subjects’ task was either to type the
sentence heard on a computer keyboard or, as the majority of the
elderly subjects chose to do, to repeat the sentence to the exper-
imenter who typed the response for them. Obvious typographic
errors were ignored. The sentence material was presented in
lists of ten. Between lists the subjects were allowed to rest as
they wished.

4.2. Results and discussion

Because a large number of studies conclude that the given per-
formance of speech understanding in noise requires a higher
SNR for elderly than for young listeners, we tested the two
groups at different SNR’s. For the young subjects, both unseg-
regated and segregated mixtures were presented at -8, -6, and
-4 dB SNR; the elderly subjects were presented the material at
-4 and -2 dB SNR. Since the IEEE material consists of gram-
matically correct but not easily predictable sentences, each of
which contains five keywords, intelligibility was measured as
the percentage of correct keywords.

Intelligibility results of the young listeners are given in Ta-
ble 3. In the table we list the intelligibility of the unsegregated
and segregated conditions separately. As observed from Table
3, all young subjects scored higher in recognizing segregated
speech than the unsegregated one at the input SNR of -8 dB.
On the other hand, some young listeners obtained improvement
at -6 dB and -4 dB while others performed worse in the segre-
gated conditions, leading to almost equal average intelligibility.
These results, although preliminary and with only a small num-
ber of subjects, indicate the effectiveness of our algorithm in
very low SNR situations.

Intelligibility test results of the four elderly listeners are
shown in Table 4. We observe that, at input SNR levels of -2
dB and -4 dB, there is no improvement in the intelligibility of
segregated mixtures; indeed the average score even dropped as
a result of segregation. When asked of the difficulty in under-
standing segregated speech, all elderly listeners reported having
been disturbed by the extraneous chirps and whistles inherent in
binary-masked mixtures. These reports are actually consistent
with previous observations showing that the elderly are more
easily distracted from listening to speech targets [17], possibly
as the result of age-related suppression of inhibitory processes
[18]. The chirps and whistles that they heard can be charac-
terized as musical noise, which has been identified as one of
main reasons why speech enhancement algorithms fail to im-
prove speech intelligibility. Such noise seems to be more dis-
turbing for the elderly than the young.

By examining IBM estimation errors in Table 2, one could
arrive at an estimate of intelligibility score for normal-hearing
listeners according to the relationship between intelligibility
and mask error reported in [7]. As 95% of the frames in segre-
gated mixtures have overall mask error rates smaller than 20%,
our system would be expected to achieve a percent-correct score
between 70% and 90% when the mixture SNR is around -5 dB.
There are several possible reasons for the gap between the ex-
pected intelligibility and the observed results in Table 3 and
Table 4. First, our IBM construction uses different LC values
rather than the 0 dB uniformly used in [7]. Second, we use
cochleagrams as the signal representation whereas they used



Table 3: Percent correct keyword intelligibility as a function of input SNR for five young subjects. The mean and standard deviation
are given in the bottom row

Input SNR
Subject -4 dB -6 dB -8 dB

Y1 Unsegregated 35.6 16.0 12.4
Segregated 42.8 36.0 16.0

Y2 Unsegregated 42.4 28.0 12.8
Segregated 52.0 34.4 20.0

Y3 Unsegregated 41.2 32.0 9.6
Segregated 44.0 30.8 17.2

Y4 Unsegregated 53.2 50.0 26.0
Segregated 46.8 33.6 26.4

Y5 Unsegregated 77.6 59.6 24.4
Segregated 62.8 52.0 34.3

Mean (+ Std) Unsegregated 50.0 (+16.7) 37.1 (+17.5) 17.0 (+7.6)
Segregated 49.7 (+8.1) 37.4 (+8.4) 22.8 (+7.6)

Table 4: Percent correct keyword intelligibility as a function of input SNR for four elderly subjects. The mean and standard deviation
are given in the bottom row

Input SNR
Subject Keyword Accuracy -2 dB -4 dB

E1 Unsegregated 55.6 35.2
Segregated 37.2 27.2

E2 Unsegregated 76.8 70.8
Segregated 53.6 46.8

E3 Unsegregated 64.4 48.0
Segregated 58.4 46.0

E4 Unsegregated 72.4 62.0
Segregated 71.2 56.4

Mean (+ Std) Unsegregated 67.3 (+9.3) 54.0 (+15.6)
Segregated 55.1 (+14.1) 44.1 (+12.2)

spectrograms. Third, our tests were conducted with fewer sub-
jects and different experimental protocols. Further research is
clearly needed in order to understand the apparent discrepancy.

5. Concluding Remarks
In this paper, we presented a preliminary intelligibility study
of a CASA system for speech segregation. The system first
separates voiced speech using MLP trained on harmonic fea-
tures. Speech segregation in voiced intervals provides the basis
for estimating noise energy, which is then used to segregate un-
voiced speech. Objective evaluation shows that our system ob-
tains substantial SNR improvements. The intelligibility study
further indicates that our algorithm can improve speech intelli-
gibility under very low SNR conditions. For elderly listeners,
processing artifacts in binary masking appear to contribute to
worse intelligibility of segregated mixtures.

We emphasize the preliminary nature of our intelligibility
tests. The small subject pools inevitably led to large perfor-
mance variability. We do not fully understand why the observed
intelligibility seems lower than would be predicted from the ob-
served relationship between intelligibility and mask error by Li

and Loizou [7]. It is unclear why elderly listeners did not per-
form worse than young listeners in unsegregated conditions, as
previous studies suggest. Also, our results seem inconsistent
with the results of Anzalone et al. [6] who found larger SRT
improvements for listeners with hearing loss (who are also el-
derly) than for normal-hearing subjects, although most of their
subjects were experienced hearing aid wearers. Future tests are
planned for more subjects and more systematic test protocols.

On the side of system development, our use of known F0
needs to be replaced by a pitch tracking algorithm for noisy
speech. Our method of unvoiced speech segregation implic-
itly relies on the assumption that noise energy does not change
much from a voiced interval to its succeeding unvoiced interval,
which works well for approximately stationary intrusions such
as SSN, but is clearly violated in multitalker scenarios.

Given the long-standing challenge of improving speech in-
telligibility in monaural speech separation [19, 20], the fact that
our system shows some improvement in low SNR conditions is
encouraging. Our preliminary tests also point to ways of po-
tentially making segregated mixtures more intelligible. For ex-
ample, methods of attenuating musical noise caused by binary



masking [21, 22] may be helpful, particularly for elderly listen-
ers. Also, different choices of LC values for IBM construction
could lead to better intelligibility performance.
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