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Abstract
Recovering the motions of speech articulators from the acoustic
speech signal has a long history, starting from the observation
that a simple concatenated tube model is a reasonable model
for the origin of formant resonances. In this work, we take a
different approach making minimal assumptions about the in-
terdependence of acoustics and articulators by estimating the
full joint distribution of the two spaces based on a corpus of
paired data, derived from an articulatory synthesizer. This ap-
proach allows us to estimate posterior distributions of articula-
tor state as well as finding the maximum-likelihood trajectories.
We present examples comparing this approach to a related, ear-
lier approach that did not incorporate prior distributions over
articulator space, and demonstrate the advantages of learning
the models from realistic utterances. We also indicate benefits
available from jointly estimating particular pairs of articulators
that have high mutual dependence.
Index Terms: articulatory inversion, speech acoustics

1. Introduction
Over the years, there have been many attempts to recover the
motions of speech articulators from the acoustic speech signal.
This type of recovery is an instance of the often challenging
inverse problems. As such, the task is to infer model param-
eters from observed data. Early attempts emphasized analyti-
cal approaches, most of which sought a unique solution using
acoustic models of the vocal tract [1, 2]. However, these ap-
proaches were quickly stunted, primarily by the fact that this in-
verse problem, like many others, suffers from non-uniqueness,
and is therefore ill-posed [3]. Specifically, it is possible for a
variety of articulator configurations to produce the same acous-
tic result an obvious challenge for inversion. When given an
acoustic signature, there will almost certainly be some ambi-
guity as to which of several articulator configurations produced
it. This non-uniqueness has been demonstrated by many re-
searchers over the last few decades, both from computational
approaches [4, 5] and experimental data [6, 7].

Despite the challenges, many researchers have nonetheless
forged ahead. Indeed, there is a lot of motivation to provide sat-
isfactory estimates of speech articulators from acoustics; such
results would be useful in a variety of applications [8]. Most
acknowledge the trouble presented by non-uniqueness, and at-
tempt to overcome those difficulties by using probabilistic ap-
proaches. Specifically, a variety of machine learning techniques
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has been applied in hopes of capturing a mapping, both for-
ward and inverse, between articulator motions and acoustic ob-
servations. This kind of research has made extensive use of
articulatory codebooks [9, 10, 11], as well as neural networks
[12, 13, 14, 15, 16, 17]. Other studies have reported the appli-
cation of dynamical models [18, 19] and stochastic techniques
[8, 20, 21], including Hidden Markov Models [22]. All have
seen moderate success, usually with some variability depending
on the type of speech sounds being inverted. For instance, vow-
els and other quasi-stationary portions of speech tend to produce
more successful estimations than do transitional sounds, exem-
plified by stop consonants.

Worth noting, additionally, are some approaches inspired
by human language development [23, 24, 25]. Most of these do
not explicitly address the inverse problem, but they nonetheless
contribute some useful ideas. Indeed, we all know that the in-
verse problem is solved regularly by human beings in the first
years of life, as they learn to speak. Children commonly learn to
imitate speech sounds by processing acoustic inputs, manipulat-
ing their own articulatory parameters and by drawing a mapping
between the two domains. Thus, it must be possible; how can a
computer be instructed to do it?

Presently, our approach uses an articulatory codebook.
Codebooks are built from large sets of articulatory data with
matching acoustic data, representing some sort of relation be-
tween the articulatory and acoustic domains. One of the first
applications of codebooks to this problem used data gathered
from Electromagnetic Articulography (EMA), which had been
vector-quantized. A codebook assembled from this data was
then used as a simple one-to-one lookup table [9]. However,
using the codebook this way ignores the many-to-one mapping
which makes articulatory inversion non-unique. A somewhat
more successful attempt assumed a many-to-one mapping, by
compiling a codebook that exhaustively covered the feasible
articulatory space, using a speech synthesizer to construct the
acoustic correlates of each configuration. Consequently, multi-
ple articulator configurations could be associated with the same
or very similar acoustic realizations. After compiling these op-
tions, they used dynamic programming to construct the most
likely path through the field of possibilities [11]. This type
of approach produced moderately successful results. A similar
method was later tried [10], using data also gathered from EMA.
However, to show any appreciable improvement over [11], they
were required to augment their distance metrics a priori with
phonemic information about the utterances.

We propose a new codebook method, which extends some
previous ideas and constitutes a generalization of prior attempts.
We assume that a very complex mapping may exist, and that
no a priori knowledge about the utterance is available. Section
2 describes the theoretical foundation of our approach, and in



section 3 we describe our experimental implementation. We
discuss the implications of these initial results in section 4.

2. Approach
In this prior work, the most common assumption is of a deter-
ministic acoustic system – which is to say if the articulator posi-
tions A are known, the acoustic observations O can be directly
and unambiguously determined through some (nonlinear) func-
tion, O = f(A). Observations may not completely determine
the articulators i.e. there may be several values of A that result
in the same O, but the forward acoustics are unambiguous i.e.
there is only one O for a given A. If, however, we have a system
where the articulator state A is incomplete, then we may have
a doubly-ambiguous situation, where a single A can result in
multiple values for O, as well as vice-versa. In this case, a more
appropriate way to describe the relationship between articulator
state and acoustic observations is as a joint probabilistic distri-
bution p(A,O), which simply describes the absolute likelihood
of any combination of articulator state and acoustic observation.
Such a probabilistic description could also incorporate a num-
ber of other aspects of the problem, including measurement un-
certainty, unmodeled variability in the system, and the a priori
probabilities of particular acoustics and particular articulatory
configurations (independent of each other). Given a suitable
approximation to p(A,O), the inverse acoustics problem of in-
ferring articulators A from acoustic observations O amounts
to calculating the posterior distribution of the articulators given
the observations i.e.:

p(A|O) = p(A,O)/p(O)

=
p(A,O)R

A
p(A,O)dA

(1)

The well-known articulatory ambiguity for given acoustics
would emerge as a broad and/or multimodal posterior distribu-
tion for the articulators. A time-local model of acoustics and ar-
ticulators could then be disambiguated by continuity considera-
tions e.g. using dynamic programming to find the best complete
path through a sequence of articulator posterior distributions.

This is the approach we take. p(A,O) should encompass
the full range of articulatory and acoustic states anticipated in
natural speech, in the appropriate proportions (i.e. with the
greatest likelihood for the most common speech sounds and
their most common articulatory counterparts). If we had an un-
limited database of real speech, along with the true underlying
articulator positions, we could simply sample from this database
at random, until we had enough points to provide an adequate
sampling density in the joint feature space, then perform some
kind of local density estimation and smoothing to approximate
p(A,O) – for instance by ‘blurring’ each distinct articulator-
acoustics pair to account for a small range of local values in
both domains. This amounts to Parzen estimation [26].

In the absence of a large, representative database of actual
articulator and acoustic pairs, we used a forward articulatory
speech synthesis model to construct a range of more or less nat-
ural and phonetically-balanced sentences (drawn from the Har-
vard IEEE set). To the extent that this training data includes
all the main speech sounds (and articulator configurations), this
database should be adequate to model the joint distribution of
articulators and acoustics, at least for the specific ‘vocal system’
being modeled by the synthesizer. Thus, if we define a set of
distance vectors between a given point in the joint articulatory-

acoustic space (A,O) and each of our training examples,

∆i =

»
A−Ai

O−Oi

–
(2)

where {Ai,Oi} are our N training patterns, we can approxi-
mate our joint distribution,

p(A,O) =
|W|
N

NX
i=1

K
“
∆T

i W∆i

”
(3)

where W is a positive-definite weighting matrix that defines
the ‘width’ of the Parzen smoothing windows in the articu-
lator and acoustic feature spaces. K(·) is the Parzen win-
dow itself, for instance a unit-variance normalized Gaussian,
K(α) = 1/

√
2π exp{−α2/2}.

The choice of W depends on the sparsity of the sample den-
sity in each dimension as well as assumptions about the smooth-
ness of the joint distribution along those dimensions. Taking
W as diagonal, a small entry in a particular dimension corre-
sponds to a wide window in that dimension, allowing for den-
sity to be interpolated between relatively broadly-spaced sam-
ples, but at the same time smoothing out any variation in more
densely-sampled regions of the space that occurs at a finer scale.
One adaptive approach to this is to vary the effective window
width in proportion to the local density – for instance, by find-
ing the k nearest neighbors to a given point, then setting the
window width at that point as some fixed factor times the aver-
age distance to these neighbors, and performing this separately
for each dimension.

In practice, then, we can calculate posterior distributions for
articulatory parameters (either as a group, or as subsets in which
case unused dimensions are ignored) by taking the acoustic ob-
servations O, then retrieving all the training patterns {Ai,Oi}
within the radius of support of the Parzen window K over the
acoustic dimensions. Then, for a each value in a grid defined
over the possible values for the articulators A, the joint prob-
ability p(A,O) of the actual observation and the hypothesized
articulator value is calculated via eqn. 3. Normalizing by the
sum over all articulator values gives the posterior probability
(according to eqn. 1) — although since the subsequent dynamic
programming search is obliged to choose exactly one articula-
tor value for each time step, a common scaling of all likelihood
scores at a particular time will not change the optimal choice,
and thus the normalization is not required in practice.

In the case of independent estimation of a single articula-
tory parameter, the result of this is that a sequence of acoustic
observation vectors results in a table of joint probabilities with
each row corresponding to one of the quantized possible artic-
ulator values, and each column corresponding to one time step.
We can regard the columns as sets of scaled posteriors for the
articulatory parameters, and use dynamic programming to find
the most likely sequence of articulatory values by simultane-
ously applying a continuity constraint as a transition cost that
penalizes large jumps in articulator position. Specifically, we
estimate the sequence of articulator values {Ât} by using dy-
namic programming to find the sequence that maximizesY

t

p(Ât|Ot)q(Ât|Ât−1) (4)

where q(Â1|Â0) is defined as 1, and

q(Ât|Ât−1) = exp


−1

2
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Ât − Ât−1
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for t > 1. σ is taken as the 99th percentile of articulator first-
order differences seen in the training data, and is calculated sep-
arately for increasing and decreasing changes. Joint estimation
of multiple articulator dimensions can be performed similarly,
for as far as it is practical to track every value in the uniformly-
quantized articulator space space. Practically, this has limited
us to two dimensions in the current work.

A key aspect of our approach is that we model p(A,O) (the
joint density of articulators and acoustics) instead of p(O|A)
(the distribution of the acoustics given a particular articulator
configuration, as used, for example, in [11]). The significance
of this is that we are modeling not only the relation between
the two spaces, but also the overall likelihood of each configu-
ration. This is particularly important in disambiguating articu-
latory configurations that may result in similar acoustic obser-
vation (i.e. a common articulation A1 and a much rarer variant
A2 for which p(O|A1) ≈ p(O|A2) ), but which may differ
greatly in their a priori likelihood of occurring in normal speech
(e.g. p(A1) � p(A2), so p(A1|O) � p(A2|O) ). In our ex-
periments, we include a comparison model which illustrates the
impact of not including the prior likelihood of each articulation
by dividing it out from each joint probability to obtain the con-
ditional i.e.

p(O|A) = p(A,O)/p(A) (6)
Finding the articulator state A that maximizes this objective,
p(O|A), instead of our true objective p(A|O) from equation
1, amounts to increasing the likelihood of each A in inverse
proportion to its prevalence in the training data i.e. boosting the
chances of the rarest articulator configurations, which naturally
leads to much less satisfactory results. This is the weakness
that arises from the modeling of a uniformly-sampled articula-
tor space as performed by [11]. Note, however, that where they
actually evaluated every possible A within some space of val-
ues, for computational ease we approximate this using equation
6, where the prior probability of the articulatory configuration,
p(A), is obtained from a histogram of articulator values (over
all dimensions, or some subset) over the entire training set.

The remaining variants presented in the experiments use
our full joint distribution, and estimate articulator values either
individually and independently, or in pairs. When more than
one articulator is estimated at the same time, estimation can
exploit joint dependence between articulator behavior, which
ought to improve performance in the cases where articulators
are directly linked, but may be ambiguous when viewed inde-
pendently. We will discuss our results from this perspective.

3. Experiments
Our codebook is based on synthesized speech obtained from the
Task Dynamic Application (TaDA) developed at Haskins Lab-
oratories. TaDA is a MATLAB implementation of the Task Dy-
namic model of speech articulator coordination [27]. As such, it
uses articulator positions as basis functions from which to syn-
thesize speech. There are eight relevant articulator positions:
tongue tip constriction degree (TTCD) and location (TTCL),
tongue body constriction degree (TBCD) and location (TBCL),
lip aperture (LA) and protrusion (PRO), velum (VEL) and glot-
tis (GLO). TaDA simultaneously generates input parameters
for the HLSyn speech synthesis software, which synthesizes
more natural-sounding speech. The speech output of HLSyn is
then transformed into 13 Mel Frequency Cepstral Coefficients
(MFCCs) [28], using a 10ms window size and 5ms window ad-
vance rate. The articulator positions from TaDA, matched with
the MFCCs constitute the final codebook.

The codebook used in our experiments was built from a
training data set composed of 40 natural and phonetically-
balanced sentences, drawn from the Harvard IEEE Corpus. To
input the sentences into TaDA, we used the program’s capability
to receive orthographic input. From within TaDA, this orthog-
raphy is then converted into phonemes via a dictionary lookup
procedure.

We ran several experiments in order to compare three dis-
tinct articulatory inversion methods. The first was an imple-
mentation of a previous attempt by Richards [11] and the others
were two variants of our own method. Specifically, the first at-
tempted to estimate a single articulator (labeled 1A), and the
second sought to estimate two articulators simultaneously (2A).
All three methods were tested on two conditions, represented
by the same two testing sentences. One sentence was designed
to be close to the training sentences (labeled ‘Easy’), in order to
mimic a larger training set. This sentence contained only words
that appeared in the training set sentences. The other sentence
was more novel, with only 29% of words in the training set (la-
beled ‘Hard’).

The literature on articulatory inversion provides no consen-
sus about how to compare estimated articulator paths with ac-
tual paths. Both correlation and geometric distance measures
are well represented in the diversity of studies on this topic. We
chose to use simple Euclidean distance as a way to compare the
actual articulator paths (as determined by TaDA) with the ones
estimated by the various inversion methods. For the Richards
method, there were a total of 16 distance measurements cal-
culated (8 articulators gathered for 2 testing sentences). The
same number of measurements was also calculated for the 1A
method. For the 2A method there were more measurements
necessary. We continued to track each articulator for each test-
ing word, but also for each accompanying articulator. This
brought the total number of measurements to 112 (8 articulators
gathered for 2 testing sentences with 7 possible accompanying
articulators).

3.1. Results

Tables 1 and 2 summarize the results of the different models in
terms of mean squared error in the normalized articulator esti-
mates relative to the ground truth. When looking at the results
of the Richards method versus our 1A method, a substantial
improvement can be seen. This can be seen even across articu-
lators. The mean Euclidean distance for the Easy testing word
improved 23.8% when using the 1A method, as opposed to the
Richards method. Surprisingly, an even larger disparity was
seen for the Hard testing word, where there was an improve-
ment of 30.0% for the 1A method. Moreover, the 1A results
were about the same or better for every articulator, with the ex-
ception of lip protrusion, in which 1A lowered performance by
50% on the Easy test sentence only. Conversely, the most dra-
matic improvement was seen with tongue tip constriction de-
gree which improved by 67.3% on the Easy sentence.

In comparing methods 1A and 2A, an improvement can
also be seen. There is some variability in the improvement
which depends on the articulator pairs chosen. However, the
improvement is evident in the overall case. For the Hard testing
sentence, the mean across all articulators (target and accom-
panying) is 2.8% lower than the 1A mean. This improvement
is not evident for the Easy sentence, however, which is 18.4%
worse, it would seem. This is mainly due to one accompanying
articulator – tongue body constriction degree – which proved
to be a major hindrance to the estimation of all target articula-



Table 1: Results of estimating articulator positions by different models: ‘Easy’ sentence. Best values in each column are in bold.
Alg. with GLO LA PRO TBCD TBCL TTCD TTCL VEL Mean
Rich – 38.5 15.9 18.8 37.7 10.8 29.3 17.4 12.9 22.7
1A – 18.8 7.3 28.2 37.6 8.2 9.6 15.9 13.1 17.3
2A GLO 18.8 7.0 27.7 13.3 8.9 9.9 16.6 12.3 14.3

LA 14.1 7.3 19.0 13.0 8.6 14.1 10.5 9.3 12.0
PRO 18.8 8.0 28.2 12.0 9.0 12.7 14.3 12.3 14.4

TBCD 18.8 36.3 40.9 37.6 61.6 38.4 56.6 50.8 42.6
TBCL 12.1 6.7 21.4 13.4 8.2 14.4 16.0 10.5 12.8
TTCD 14.4 7.2 17.9 14.5 9.3 9.6 12.2 8.8 11.7
TTCL 10.9 6.7 19.9 14.1 9.5 14.3 15.9 8.3 12.4
VEL 15.6 6.6 18.9 12.5 8.1 9.9 9.3 13.1 11.7

Table 2: Results of estimating articulator positions by different models: ‘Hard’ sentence. Best values in each column are in bold.
Alg. with GLO LA PRO TBCD TBCL TTCD TTCL VEL Mean
Rich – 48.7 37.6 20.8 27.9 25.3 13.1 18.5 11.1 25.4
1A – 31.1 28.2 19.7 12.2 16.6 11.9 13.4 9.5 17.8
2A GLO 31.1 27.5 19.7 14.3 16.3 11.5 14.4 9.8 18.1

LA 28.1 28.2 19.6 12.9 13.4 11.1 15.1 8.5 17.1
PRO 31.1 26.8 19.7 16.5 18.2 11.9 12.7 8.8 18.2

TBCD 27.5 24.5 19.7 12.2 14.9 10.2 11.2 8.5 16.1
TBCL 28.9 26.9 19.7 14.8 16.6 9.6 13.4 9.3 17.4
TTCD 26.8 27.9 19.7 11.2 12.6 11.9 13.6 8.7 16.6
TTCL 26.7 28.1 19.7 15.5 9.7 12.0 13.4 8.5 16.7
VEL 27.2 27.6 19.7 13.5 14.5 11.5 13.8 9.5 17.2

tors. If one removes these data points, then overall mean for the
2A method shows a 15.1% improvement over the 1A method.
The largest improvement of articulator estimation was seen with
the pairing of tongue body constriction degree and lip protru-
sion. This allowed the estimation of the former to be improved
68.1% over the 1A method for the Easy sentence. The largest
mean improvement across target articulators was seen with the
assistance of tongue tip construction degree as the accompany-
ing articulator, which improved estimation of the articulators by
32.3% for the Easy sentence.

Thus, a complicated picture arises when considering
method 2A. It was not a clear win over 1A and, even though
the overall picture was positive, the specifics of the picture are
mixed. Some articulators seem to be a great help as an accom-
paniment to other articulators, and some other articulators gain
benefits from being accompanied without regard to which ar-
ticulator. For instance, velum, glottis and lip protrusion seem
to be aided by the majority of accompanying articulators. At
the same time, tongue tip constriction degree and location and
lip aperture appear to help in the estimation of most other ar-
ticulators. The picture is mixed, though, as the estimation of
some articulators was hindered by 2A. To tongue body constric-
tion degree, estimation with almost every other articulator was
detrimental, while glottis confused nearly every articulator it
was paired with.

Figures 1 and 2 show results for the estimation of individ-
ual articulators (tongue body constriction location and lip aper-
ture, respectively) for each of the three methods applied. For
all plots, the thin red line represents the actual articulator path,
while the thicker blue line represents the estimated articulator
values. Behind each plot is shown the local-match scores used
to determine the estimated path with the dynamic programming

algorithm. These scores can also be thought of as probabilities,
at a given instant in time, of the articulator taking on a particular
value, given the observed acoustics at that time. The two artic-
ulators chosen were jointly estimated for the representation of
the 2A case, as indicated. Thus, the 2A results are projections of
the 3-dimensional estimation space which has the dimensions
LA, TTCL and time. For both articulators, the 2A estimation
produced superior results to either of the 1A estimations. Addi-
tionally, the 1A estimation was, for both individually, superior
to the Richards estimation.

4. Discussion and Conclusions
We have presented an approach to estimating articulator con-
figuration directly from acoustics based on a model of the joint
distribution of the two, multidimensional spaces that incorpo-
rates both the link between articulators and acoustics, and the
prior probabilities in both spaces, based on a paired corpus that
is taken to reflect the balance of gestures in real speech. This
approach can accommodate arbitrarily complex relationships,
including ambiguities (multimodality) in either domain. When
ambiguity occurs, valid articulation can still be inferred based
both on continuity in articulator space (as enforced by transi-
tion constraints through time) and on differing priors among the
alternative explanations.

Our transition modeling is somewhat deficient compared
to the careful model of joint density: we use a single, global
cost function to discourage large excursions in our dynamic
programming best-cost paths, rather than, say, attempting to
model the actual dynamics present in our training data. Indeed,
it would be possible to extend the probabilistic model used at
the frame level to obtain a posterior over sequences of articula-
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Figure 1: Example estimates for TBCL articulator from the
three models. Top: Richards model (no priors). Middle: single-
articulator current model. Bottom: TBCL from joint estimation
of TBCL and LA. Ground truth (i.e. input to the synthesizer) is
shown in each case, as is the underlying score surface input to
the dynamic programming.

tors given sequences of observations, using the hidden Markov
model (HMM). There is a problem here, however: In the con-
ventional exposition of the HMM, local constraints are incorpo-
rated as the conditional distribution of observations given state,
p(O|A), not the posterior probabilities of state given acoustics
p(A|O) adopted as the goal here. The HMM then applies the
prior of particular state sequences via the state transition costs,
p(At|At−1) which incorporate both the likelihood of a particu-
lar transition and, implicitly, the overall likelihood of particular
state configurations. One interpretation of our current approach
is that we have taken state-specific variations in the transition
probabilities and incorporated them in our local match scores,
allowing a single, global, normalized transition cost. However,
experiments to estimate and model transition behavior more ac-
curately are an important direction for future work.

4.1. Future Work

The most significant challenges we face in the future revolve
around moving toward speaker independence. Our results, no
matter how much improved, are tied tightly to a specific – and
in this case synthetic – speaker. The speaker that is implic-
itly represented by TaDA was our sole speaker for the exper-
iments described herein. Moreover, the speech generated by
TaDA is bound by a phonemic decomposition of the signal,
which serves as the input to the synthesizer. Both of these fac-
tors mean that our training data, from which we build our code-
book, is lacking in variation. Thus, we suspect that our code-
book approach would struggle to predict the articulator motions
of speech which is variable and substantially different from the
TaDA speaker. That is to say, we suspect a challenge in apply-
ing our technique to additional speakers and to natural speech.
There are several possibilities that could aid in overcoming this
shortcoming. One idea is to average across a range of speak-
ers. This could be accomplished by simply introducing varia-
tion into the training data in the form of new and different speak-
ers. However, we tend to favor normalization of features into a
speaker-independent space.
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Figure 2: Example estimates for TBCL articulator from the
three models as fig 1.

Of course, much rests on the assumption that we can ob-
tain large amounts of training data in the future. From the
standpoint of collecting synthetic speech, this may not pose too
much a challenge. Different synthetic speakers can be created
by varying the parameters of the synthesizer. Collecting speech-
articulator pairing data for natural speech has been a challenge
over the years. Several groups are currently working on compil-
ing these data. Notably, the Speech Production and Articulation
kNowledge Group (SPAN) is using Magnetic Resonance Imag-
ing to capture data about the very same articulator used in TaDA
[29]. This sort of endeavor is absolutely crucial to the future of
solving articulator inversion.

Since to much of our methodology stands on the shoulders
of the acoustic representation, it may be necessary to explore
more sophisticated options for that representation in the fu-
ture. Although MFCCs seem to perform well, especially in con-
junction with geometric measures of similarity, they are by no
means the ultimate choice. It is disappointing to note that very
few representations of the speech acoustics have attempted to
track the spectral changes caused by changes in the articulators,
despite the fact that the articulatory functions’ primary effect on
the acoustics of the speech waveform consists of changing the
source filter characteristics. In one of the next incarnations of
our model, we will supplement or supplant our MFCC-based
frame-by-frame acoustic data with information containing the
magnitude and phase of changes in a finite number of frequency
prominences, in the hope that such a modification will result
in the acoustics being more strongly bound to the articulatory
functions.
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