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ABSTRACT 
 
Over the past several decades, automatic speech recognition has 
made great progress through the application of statistics and 
machine learning, combined with perceptual and structural 
knowledge about speech and language, as well as its variability. 
This paper reviews some recent work that applies some of these 
approaches to cortical processing of speech and language in the 
human brain to better understand how it functions. Specific 
experiments demonstrate feasibility for the discrimination of small 
sets of words (83% on 10 spoken words) and semantic categories 
(76% on 2 categories). This speech and language information is 
broadly distributed both spatially and temporally across the brain. 
Index Terms: speech recognition, semantics, machine learning,  
brain, magnetoencephalography, electroencephalography, support 
vector machines 
 

1. INTRODUCTION 
 
This paper briefly reviews the time course of some extracranial and 
intracranial events in the brain responding to diverse speech and 
language stimuli. Machine learning techniques are applied 
comparatively to both magnetoencephalography (MEG) and 
electroencephalography (EEG) data to demonstrate the existence of 
semantic category and individual word discrimination information. 
There are a great many unknowns about the stages of processing 
speech and language in the brain. Nonetheless, a set of consistent  
processing stages have been well characterized. Some intriguing 
comparisons can be made to state-of-the-art automatic speech 
recognition systems. We also look at some practical issues in 
extending this approach, and potential applications in the future.  

 
2. CORTICAL SPEECH PROCESSING 

 
A variety of different kinds of processing are used to record brain 
activity. Different types are routinely used to extract different 
kinds of information. Each of these has unique advantages and 
disadvantages. Taken together, multiple recording modes are 
usually complementary. This section looks at the results of several 
types to illustrate cortical responses to speech and language 
stimuli.  
 
     As is seen in the examples following, expectancy plays a major 
role in how the brain responds to stimuli. Responses are typically 
observed to stimuli across a range of levels, from lexical to 
syntactic and semantic.  
 

2.1. Intracranial Recordings 
 
Intracranial recordings can be obtained from implanted 
multicontact depth electrodes, typically in epileptic patients who 
are being clinically evaluated in advance of surgery. Local field 
potentials are obtained from normal brain tissue as well as from 
damaged brain tissue to guide surgical excision of affected areas 
while minimizing disruption to unaffected areas, especially 
significant language areas.  Magnetic resonance imaging (MRI)  is 
performed to confirm subject brain anatomy and precise electrode 
placement. When presented with visual stimuli of words and 
sentences requiring appropriate word completion, subjects are 
observed to generate electrical activation patterns which 
demonstrate a sequence of responses corresponding to different 
language processing stages [1]. Consistent triphasic responses were 
obtained, localized within Broca’s area in the ~200 msec, ~320 
msec, and ~450 msec timeframes following the onset of  
presentation. Recordings outside of Broca’s areas demonstrated 
different patterns of responses. Subjects were instructed to focus on 
thinking silently about simply reading or appropriately inflecting a 
set of nouns, and verbs, and sometimes to press a key in response. 
Subjects reading individual words (“Read [rock]”) evoke a lexical 
response ~200 msec from stimulus onset. Less frequent words 
elicit a greater amplitude response. Words of different syllable 
length are not distinguished by the observed response. Subjects 
asked to inflect grammatically correct forms of nouns or verbs in a 
sentence final position (e.g. “Yesterday they [walk]”), evidenced 
significant responses 320 msec from stimulus onset. At about ~450 
msec, the phonological and phonetic encoding processes required 
for articulation are completed.  For this last phase, the evoked 
response is greater for more complex polysyllabic utterances.  
 
2.2 Electroencephalography (EEG) 
 
Electroencephalography (EEG) is a noninvasive recording 
technique which measures summed electrical activity. Event-
related potential (ERPs), are averaged EEG recordings which are 
typically time-locked to a specific stimulus event.  
 
     In 1980, Kutas and Hillyard [2] reported that when subjects are 
presented with semantically anomalous or ambiguous sentences, 
they generate significant ERP responses with a negative 
component in the 400 msec time frame following the onset of such 
a triggering event.  Subjects were presented with a series of 7-word 
sentences where the final word was 1) semantically typical, or 2) 
moderately or 3) extremely unusual.  Typical samples of 
semantically meaningful sentences include “He took a drink from a 
glass” or He spread his bread with butter”.  A moderately unusual 
sentence might be “He took a sip from a waterfall.” A more 



extreme case could be “He spread his warm bread with socks” or 
“He took a sip from the transmitter”.  
 
     Another quite robust ERP positive voltage marker is the P300 
which is typically associated with detection of “odd ball” 
phenomena (responds to unusual events, not just language-related) 
observed by the subject. This response is currently used by some 
video game players to activate game events. Also disabled patients 
have been taught to exercise control or make computer menu 
choices by triggering a P300 response. It typically is strongest over 
the parietal lobes though it may be generated by other parts of the 
brain. 
 
    Syntactic and other anomalies (“garden path sentences”) can 
often be found to elicit a positive ERP component known as the 
P600. Research conducted by Thierry et al [3] examines the 
elicitation of P600 in subjects reading Shakespeare. Shakespeare is 
well-known not only for creating many thousands of novel words 
in the English language (e.g. eyeballs, tongue-tied, manager, etc.) 
but also for using words in unusual ways. He frequently made use 
of “functional shifts” whereby one word class is used as another in 
semantically meaningful constructions. Examples include “He 
childed as I fathered”, “Strong wines thick my thoughts”, and 
“You said you would companion me.” Subjects reading these 
constructions typically produced P600 responses, flagging the 
syntactic violations, but not evoking the N400 semantic violations 
marker. Although frequently attributed to the detection of syntactic 
errors, it is also believed that the P600 may arise from a reanalysis 
or reprocessing/repair stage of language processing more 
generally.  Linguistically mediated ERPs may also occur well 
beyond 600 msec from stimulus onset as individuals engage in yet 
further processing stages to interpret jokes. 
 
 
     Several of these ERP responses are also elicited in other 
domains as well as with speech and language.  Subjects responding 
to unexpected arithmetic terms in a sequence [4], also elicit ERP 
P600 responses. Out-of-key chords in a musical chord progression 
can give rise to a late negativity at about 500 msec [5], [6], as well 
as a P600 [7] Out-of-key chords also can reliably give rise to Early 
Right Anterior Negativity (ERAN) responses in the 160-180 msec 
timeframe, for both musicians and nonmusicians [8]. There has 
been much discussion over how linguistic and music processing 
might or might not be dependent on some of the same neural 
substrates. Interestingly, an interaction between linguistic and 
music processing has been demonstrated where priming with either 
a sentence or musical excerpt followed by a semantically unrelated 
word, will produce an N400 response [9]. 
 
2.3 Magnetoencephalography (MEG) 
 
Magnetoencephalography is a recording technique that measures 
changes in the magnetic field due to changes in electrical 
activations of the brain. Although similar in many regards to EEG, 
MEG samples the electrical currents differently and thus each 
provides information complementary to the other. Because the 
MEG signals are so extremely weak, heavy magnetic room 
shielding and very sensitive cryogenic detectors are required.  In 
the experiments reported here, a helmet containing 3 (1 
magnetometer plus 2 gradiometers) sensors at each of 102 
uniformly spaced sensor locations (~2-3 cm apart) are embedded 
within a spherical dewar helmet that covers the subject’s head, 
excluding their face. EEG signals can be recorded simultaneously 
with MEG.  Both extracranial EEG and MEG signals, as well as 
intracranial EEG (iEEG) recordings, have the advantage of high 

temporal resolution (msec) in comparison with other imaging 
techniques (secs or mins) including fMRI, positron emission 
tomography (PET), and single photon emission tomography 
(SPECT). These other imaging techniques have an advantage in 
providing much higher spatial resolution. Neither EEG nor MEG 
have a unique inverse solution to identify the precise areas from 
which their signals are derived. Nonetheless, utilizing various 
constraints can help reduce spatial ambiguities. Employing 
multiple complementary techniques enables the collection of better 
information than for any single technique.  
 

3. EXPERIMENTAL PROCEDURES 
 
3.1 Subjects, Data, and Speech/Language Tasks 
 
Subjects consisted of 9 healthy, right-handed, native English-
speaking males between 22 and 30 years of age. MRI scans were 
obtained and confirmed the absence of any apparent structural 
brain abnormalities. This data, experimental procedures, and prior 
modality-specific analysis have previously been reported in detail 
by Marinkovic, et al [10]. 
 
     MEG data was recorded from a 306-channel Electa Neuromag 
Vectorview System with sampling at 600 HZ and filtering from .1 
to 200Hz. A Polhemus 3Space Isotrack II system was used to 
determine the locations of the magnetic coils relative to critical 
anatomic points for precise coregistration with MRI images.  A 64-
channel EEG cap was utilized to obtain simultaneous EEG 
recordings, also sampled at 600 Hz with filtering from .1 to 200 
Hz. 
 
     Two speech and language tasks were employed here to explore 
subject responses, separately to auditory (SA) and visual (SV) 
stimuli. Two sets of disjoint word lists were prepared, 
approximately balanced for word frequency, syllable, and letter 
counts.  One set was used for the SA visual presentation and the 
other for the SV auditory presentation in two sessions about 4 
months apart.  Each set of words was evenly split between animals 
and objects, and within each category, the choice of animals or 
objects was further evenly divided between those that were smaller 
or larger than a foot in length. For the SA task, the individual 
words were recorded by a single male speaker and were digitally 
normalized for amplitude and duration (500 msec).  Trial 
presentations of these audio recordings were made to subjects 
binaurally through plastic tubes, with one noun presented every 2.2 
sec. For the SV task, words were presented as white letters on a 
black background projected in front of the subject, at 2 sec. 
intervals. At each SA and SV session, subjects were presented with 
a succession of trials, half of which were “repeat” words (10 
representative words presented multiple times) and the balance of 
which were novel words, each presented only once.   
 
     For each  SA or SV trial, the subject was asked to make a “size 
judgment” to determine if the animal or object noun presented was 
larger than 1 foot  in any dimension (e.g. bobcat, crib) or smaller 
than 1 foot (e.g. buckle, amoeba). If and only if the observed noun, 
designated as a “target word”, was larger than 1 foot, the subject 
was instructed to press a button with their left hand. Words smaller 
than 1 foot (in any dimension) were designated as “non-target 
words”. Accuracy in performing this task was assessed for each 
subject. 
 
During the SA and SV sessions, the repeat and novel words were 
randomized. A total of 390 trials were presented for the SV task, 
and 780 trials for the SA task. Within each set of the 10 repeat  



 
 Figure 1: Schema showing  amplitude-based feature extraction 
used to train nonlinear SVMs to determine decision boundaries in 
both binary and multiclass sets. 

 
 
words for the SA and SV tasks, respectively, half of the words are 
animals and half are objects. Each set of the 10 repeat words for 
the SA and SV tasks contain 5 large or target words and 5 small or 
non-target words.  The 10 SA repeat words are cricket, oyster, 
claw, fork, medal, serpent, lion, shirt, flag, and shelf. The SV 
repeat words are feather, mussel, lipstick, nametag, pistol, 
dinosaur, python, steer, banjo, and suitcase. 
 
 4. DATA ANALYSIS AND RESULTS 
 
For both the EEG and MEG data, ERPs and event-related fields 
(ERFs) were computed. Individual channel signals were band-pass 
filtered from 1 to 30 Hz prior to determining averaged time-lock 
analyses. EKG, gross movement and other artifacts were 
automatically removed. A 500 msec pre-stimulus baseline was 
determined and used in computing corrected ERPs and ERFs. 
Custom MATLAB code incorporating routines from EEGLAB and 
Field Trip toolboxes (http://fieldtrip.fcdonders.nl) was used to 
compute timelocked averages aligned with stimulus onset times.  
 
     For each trial, amplitude features were sampled at 6 designated 
time points from each channel of these ERPs and ERFs, and 
concatenated, to create large feature vectors.  The six time points 
chosen for decoding animals vs. objects, were 200, 300, 400, 500, 
600, and 700 msec post-stimulus and for decoding individual 
words were 250, 300, 350, 400, 450, and 500 msec poststimulus 
(see Figure 1). These feature vectors thereby capture  
spatiotemporal characteristics in the cortical data for each trial. 
 
     Support vector machines (SVMs) were chosen to classify and 
discriminate between the different classes of categories (e.g. 
animal vs. object), and between individual words. This type of 
machine learning algorithm has been successfully employed in 
dealing with high dimensional data, to generate both linear and 
nonlinear decision boundaries. The SVMs employed here are 
MATLAB routines as implemented by Joachims [11] and 
Crammer and Singer [12]. Standard cross-validation techniques, 
always maintaining independent training and test sets, were used to 
evaluate classification accuracy. Between one trial (for individual 
words) to thirty trials (for animals vs. objects) were omitted in each 
cross-validation round before training the SVM on the remaining 
trials.  
 
Figure 1 illustrates schematically the feature vector composition 
from a single trial, and the results of training a nonlinear SVM to 
to classify new words, based determine the boundaries between the 
two semantic classes (animals vs, objects) or between individual 
words. These boundaries are used during test to classify new words  

 
 
based on their feature vectors. Only novel or non-repeated words 
were used for distinguishing between animals and objects. In order 
to maintain larger sample sizes for training purposes, only repeat 
words were used in the tests to discriminate between individual 
words. Significance thresholds were determined by shuffling target 
labels and performing 1000 cross-validation tests.  
 
     For each of the 9 subjects, SVMs were trained separately on 
EEG features, MEG features, and both EEG and MEG features, 1) 
to discriminate between animals and objects, using only novel 
words, and 2) to discriminate between 5 individual words (separate 
sets of target and non-target words), using only repeat word data. 
Since subjects responding to target words were required to make a 
motor action pressing a button, it was decided to separate out the 
target and non-target word sets for the individual word decoding 
tests to avoid possible differential volitional motor effects between 
the two types of data. To minimize early auditory and visual 
effects, the time frames over which 6 evenly spaced points were 
chosen for the SVM features, was 200-700 msec, and for the 
individual words, 250-500 msec. Figure 2 shows the decoding 
accuracy for these discrimination tests.  Horizontal lines indicate 
chance accuracy (solid line) and significance thresholds  (dashed 
line) for each test. For all SA and SV tests, statistical significance 
in discriminating between animals and objects, or discriminating 
between 5 individual words, is demonstrated for all 9 subjects 
when using combined EEG and MEG data.  The discrimination 
accuracy benefit of combining both EEG and MEG data in training 
the SVMs, demonstrates their complementary characteristics. In 
computing averaged contributions across subjects for these two 
types of data and comparing the benefit of the combined data over 
either type alone, it is evident that the MEG data is making the 
greater contribution, in all 4 discrimination tests shown.  When 
MEG SVM weights and data are projected onto 2-D topographic 
representations of the head, it is evident that both category and 
individual word discrimination information, for both the SV and 
the SA tasks, is quite broadly distributed both spatially and 
temporally [13]. Dynamic discrimination information, although 
prominently left-lateralized,, is also clearly evident bilaterally. 
 
     Using the SVMs trained separately, with EEG, MEG, and 
combined EEG and MEG data, to discriminate between the 10 
individual repeat words for each of the SA and SV tasks, confusion 
matrices were generated. The highest accuracies are obtained by 

Figure 2: Decode Accuracy for EEG, MEG, EEG+MEG



the MEG SA data, followed by EEG SA, MEG SV, and then EEG 
SV. The confusion matrices obtained from MEG data alone are 
comparable to those combining EEG and MEG data. An analysis 
of variance (ANOVA) of the specific word errors by semantic 
category, either animals vs. objects or target vs, non-target words, 
demonstrates a striking dichotomy with confusion rates between 
words within a class, exceeding those between classes. For the SV 
target/non-target word discrimination test, the confusion rate 
between class mean+ s.e. = 0.0472+0.027 was much lower than the 
within class confusion rate = 0.125+0.045 (p<0.00001). For the SV 
animal/object test, the between class confusion = 0.074+0.037 was 
again lower than the within class confusion = 0.092+0.043 
(p<0.005).  Likewise for the SA target/non-target test, the between 
class confusion rate = 0.038+0.028 was significantly less than the 
within class confusion = 0.067+067+0.036 (p<0.00001). The 
average SA animal/object between class confusion test = 
0.045+0.031 also was exceeded by the within class confusion = 
0.058+ 0.034 (p<0.05). These results suggest the inclusion of 
semantic information in the cortical data recorded, and contributing 
to individual word discrimination. Additional details on data 
analysis and more related experiments on this data are available 
from Chan et al [14]. Extensions of this work using SVMs to 
decode intracranial EEG data also demonstrate significant 
individual word and semantic category discrimination [16]. 
Another way to use SVMs is to window the data and decode the 
individual frames to ascertain how much discrimination 
information is available in different time frames.  In speech 
processing, signal processing information is typically windowed 
with overlapping frames (e.g. 20 msec frames overlapped by 10 
msec). Here windows of 150 msec are computed, overlapped by 
120 msec for the SA MEG individual 10 word discrimination 
task.

   
 
Figure 3 shows the results for all 9 subjects for the MEG SA data, 
throughout the 1second timeframe following stimulus onset. A 
horizontal line at 10% indicates chance performance.  
Discrimination accuracy for the individual 150 msec frames 
rapidly increases from about 100 msec, and by 300 msec averages 
about 50% across all the subjects. After about 600 msec, accuracy 
starts sharply declining, but remains well above chance even 
beyond 900 msec. Although broadly similar to one another, with 
multimodal peaks between about 200 and 750 msec,, the individual 
subject discrimination curves also evidence individual variability 
between subjects. This plot indicates a significant amount of 
discrimination information exists within these limited windows. 
Similar characteristics are also readily apparent in even shorter 
windows (e.g. 50 msec.). The evidence of this succession of 
information-rich windowed data frames, especially in conjunction 
with the broad spatial distribution of discrimination information 

observed, all suggests that the cortical processing of speech and 
language data is part of a very robust, highly redundant system.  
 
Figure 4 illustrates another perspective on how dynamic 
discrimination information grows cumulatively.  This plot, also 
based on the SA task windowed MEG data (50 msec windows 
overlapped by 20 msec) for discriminating 10 individual words, 
shows the time course of accumulating discrimination information 
from stimulus onset. Already by 100 msec, discrimination 
accuracy exceeds chance for all subjects, by 200 msec, the average 
discrimination accuracy is about 35%, by 300 msec it is about 
50%. By 600 msec, the average discrimination level is above 70%. 
At this point for most subjects, the discrimination response curves 
asymptote, and then start slowly declining after about 900 msec.  

   
Figure 5 is identical to Figure 4 but has the addition of several 
vertical lines superimposed on it. These lines are positioned at 
~200, ~320, and ~450 msec (corresponding to sequential stages of 
lexical, grammatical, and phonological information localized 
within Broca’s area [1]), as well as the P300, the N400, and the 
P600. These markers, and the manipulation of them, may prove 
useful in helping us design future experiments to help unravel more 
information about how the brain processes speech and language, 
including across different modalities. Given that these time 
markers are observed from different contexts (incl. speech and 
music), with auditory as well as visual stimuli, this figure is not 
intended to illustrate a specific model. But rather it is intended for 
reflecting and being mindful of the parallel and serial processes 
that are transpiring during the time course of individual word 
recognition and other speech and language processing tasks. 
 

 
 

Sequence of Some Observed Localized and Distributed 
Speech/Language and Music Processing Events 



 
5. DISCUSSION OF COMPUTER VS CORTICAL 

PROCESSING OF SPEECH AND LANGUAGE 
 
Though long used for speech and other pattern recognition 
challenges, the applications of machine learning techniques to 
cortical signal analysis have been somewhat limited. Some recent 
machine learning research by Mitchell et al [16] demonstrates the 
efficacy of this approach by successfully making predictions of 
fMRI brain activations to individual words based on their semantic 
associations.   
 

 
 
 

 
 
When we compare what we know about cortical processing of 
speech and language to state-of-the-art stochastic processing based  
speech recognition systems, we see some intriguing similarities 
and contrasts. Although these systems are designed and engineered 
very differently, they exhibit some similar behaviors.  Both types 
of systems process data dynamically in real-time as it becomes 
available. Biological systems “learn” characteristics of speech and 
language by example, extrapolation, and adaptation.  
 
     In automatic speech recognition systems, the major component 
acoustic and language models are represented probabilistically 
within network representations Speech recognition systems are 
“trained” by aligning examplars (training samples) with an 
underlying computable network representation. New incoming data 
is then decoded relative to these existing models, to determine the 
information they contain, by assessing the most likely state 
sequence observed in these underlying models. These models can 
also be refined and improved through adaptation. For both types of 
systems, biological or computational models are constructed, 
establishing a set of expectations around acoustic-phonetic 
representations, lexical components, the syntax and semantics of 
word usage and associations, speaker characteristics, 
environmental/channel noise, etc. 
 
     As we have seen in the preceding examples with the P300, 
N400, P600, etc., cortical responses to infrequent or unusual input 
can result in larger activation responses, at the lexical, semantic, 
and syntactic levels. Stochastic speech recognition systems 
typically respond to unusual or incongruous data by expanding or 
deepening their search through their network state spaces to 
explore more possibilities. This can be done at acoustic-phonetic 
levels as well as at semantic/syntactic levels. If recognition scores 
matching input speech data become poor; that is, fall below some 
predetermined threshold, many systems will then backtrack to 

pursue other possibilities.  Search parameters typically can be 
modified to meet memory space, time and accuracy requirements. 
In the event of ambiguities, both computer and cortical systems can 
take longer to process available data and make a determination. It 
appears that both types of systems may be able to reprocess and/or 
repair incorrect prior decisions.  
 
     One of the intriguing similarities of automatic speech 
recognition and cortical speech recognition is the presence in both, 
of a “Fast” or “Rapid Match” system which produces significant 
recognition results before the subject has heard the entire word 
being spoken! It is very evident in the data shown here in Figures 
3, 4, and 5. The speech recordings prepared for the SA task, and 
presented to the 9 subjects, were slowly spoken, averaging about 
500 msec. in duration. Inspection of the SVM dynamic decoding 
results in each of these figures, clearly shows high levels of 
discrimination well before 500 msec have elapsed from the onset 
of the stimulus. That the cortical system is able to do this, is again 
indicative of the rich information content and redundancy of the 
underlying speech signal.  
 
     Although we don’t know how this is accomplished in the brain, 
there are a number of techniques for achieving this in automatic 
recognition systems. One of these methods [17], proceeds by 
combining, averaging, and smoothing several frames of data, and 
then comparing the similarity of these against typical similar 
sounding “word start groups” for each of the words being 
evaluated. Words that have dissimilar word start groups are 
thereby quickly eliminated from further consideration. Although 
more errors can be introduced by using these approximations, in 
practice, problems attributable to these approximations are minor, 
especially as compared with the significant savings in time and 
memory thereby achieved. As an aside, when this faster than real-
time recognition was observed in the 1980s (even without Fast 
Match) for small vocabularies (e.g. 10 digits, etc.), it was soon 
discovered that to avoid user upset, it was important for the user 
interface to introduce a delay to wait until the speaker had finished 
speaking, and knew they were finished, before reporting the results 
to the speaker. Otherwise users became frustrated, felt they had 
been tricked, that the system was somehow reading their mind (!), 
etc. or just became confused. 
 
So despite the drastic differences between computer and cortical 
processing systems, there are still some striking similarities! 
 
For both types of systems, machine learning techniques can be 
applied to conduct rigorous quantitative research. It is hoped that 
this may prove to be a useful tool and probe 1) to better understand 
the structure and dynamics of speech and language understanding 
in the brain itself, and 2) to help form a robust basis for future 
productive applications.  Better understanding how the brain 
processes speech and language could lead to improvements in 
automatic speech processing systems, which though useful in many 
regards, are still much inferior to cortical systems.  
 
For understanding cortical processes, machine learning techniques 
can be applied both to localized responses, (e.g. intracranial 
studies) as well as distributed responses (e.g. EEG, MEG studies).  
Combining these approaches with complementary imaging (e.g. 
fMRI, etc.) and other studies enables a better spatiotemporal 
characterization, and a more complete and accurate picture to 
emerge of the underlying cortical processes. It is hoped that with  
improved understanding, opportunities will open up for improved 
medical therapies, prosthetic devices, educational applications, etc. 
 
  

Figure 6: Basic system components for recognition 
of speech and language  
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