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Abstract
A novel technique of unmasking to repair the degradation in
sources separated by spectrogram masking is proposed. Our
approach is based on explicit knowledge of the musical audio
at note level from a score-audio alignment, which we termed
Informed Source Separation (ISS). Such knowledge allows the
spectrogram energy to be decomposed into note-based models.
We assume that a spectrogram mask for the solo is obtained
and focus on the problem of repairing the degraded audio. We
evaluate the spectrogram as well as the harmonic structure of
the music: we either search for unmasked (orchestra) partials
of the orchestra to be transposed onto a masked (solo) region or
reshape a solo partial with phase and amplitude imputed from
unmasked regions. We describe a Kalman smoothing technique
to decouple the phase and amplitude of a musical partial that
enables the modification to the spectrogram. Audio examples
from a piano concerto are available for evaluation.
Index Terms: musical audio source separation BSS score fol-
lowing spectrogram masking Kalman phase estimation

1. Introduction
We address the “desoloing” problem, in which we attempt to
isolate the accompanying instruments in a monaural recording
of music for soloist and orchestral accompaniment. The mo-
tivation is to produce the audio of the accompaniment part for
concertos in the “classical” domain as well as the karaoke in
popular music, whereas the ultimate goal is to have the orches-
tra adapt timing to the live player which is a problem we do not
discuss there. Nevertheless, the accompanying audio is needed
and we offer solutions through our demixing or isolation of the
original sources (instruments).

Most past effort in this “source separation” problem treats
Blind Source Separation (BSS) problems and assumes little se-
mantic knowledge of the audio content but the independence of
the sources [2] [3] or relies on general cues of musical sources
rather than the content of the sources [4]. In contrast, we as-
sume explicit knowledge in the form of a score match, which
establishes a correspondence between the audio data and a sym-
bolic score representation giving the onset times of all musi-
cal events. See Fig. 1 for an example. Such correspondence,
known as “score following” or “alignment”, initially introduced
and developed by Vercoe [1], Dannenberg [16] is the founda-
tion of our approach which we termed Informed Source Separa-
tion (ISS). Other examples in the category of ISS include Dub-
nov [8] and Raphael [9]. In our approach, we begin by masking
the short time Fourier transform (STFT) in an attempt to “erase”
the soloist’s contribution. We also based our exploration toward
partial-wise phase/amplitude relationship on the work in [10] in
which spectrogram magnitude is decomposed into each partial

Figure 1: Score following of an excerpt from 2nd mvmt. of
Ravel’s piano concerto in G (vertical lines mark the piano note
onset)

by fitting note-based models. [15] is another effort of spectro-
gram decomposition in speech. However, our emphasis here is
not on estimating the mask or fitting note models, but on em-
ploying a novel set of procedures (termed “unmasking”) that
estimates and then transforms note partials, in which the dam-
age caused by our masking procedure is repaired.

The source separation problem is highly challenging. For
the musical accompaniment and karaoke problems one may be
able to define success more generously than in other domains -
in these cases the live singer or soloist will play at the precise re-
gions in time-frequency space where the most damage has been
done through our separation process, thereby hiding some of the
inevitable damage.

The structure of this paper is as follows: we briefly formu-
late the masking problem in sect. 2, followed by our description
of partial phase / amplitude estimation in sect. 3 / 4. Such es-
timating enables our unmasking technique in sect. 5 which is
applied in the context of a piano concerto in sect. 6.

2. Spectrogram Masking of the Solo
Given our original audio signal, x(s), we define the short time
Fourier transform (STFT) by

X(t, k) =

N−1X
n=0

x(tH + n)w(n)e−2πjkn/N

where H is the hop size, N is the window length and w is
the window function. We will define our masking operation



in this STFT domain. To do so, we estimate two “comple-
mentary” masks, 1s(t, k), and 1a(t, k), taking values in {0, 1}
with 1s(t, k) + 1a(t, k) = 1. These masks are used to isolate
the parts of X we attribute to the soloist and accompaniment
through

Xs(t, k) = 1s(t, k)X(t, k) (1)

Xa(t, k) = 1a(t, k)X(t, k) (2)

In other words we label each time-frequency “cell” (t, k) as
either solo or accompaniment. Since our focus here is on the
unmasking problem, we will bias our labeling of each time-
frequency cell toward the solo category, since we want to make
sure the original soloist is completely removed. Using our score
match, it would be relatively easy to simply draw a rectangle
around each solo partial while calling the interior of these rect-
angles our solo mask. Our approach is somewhat more sophis-
ticated, employing special treatment of the wide spectral disper-
sion associated with note onsets by Ono et al. [19], as well as
careful modeling of the steady state partials. However, we will
not discuss this mask estimation problem here.

While Xa(t, k) (and Xs(t, k)) is, in general, not the STFT
of any time signal, applying the inverse STFT operation gives
perceptually sufficient results with appropriately defined STFT.
In particular, if we use a Hann window withH = N/4, one can
show that applying the STFT inverse to Xa results in the audio
signal whose STFT is closest to Xa in the sense of Euclidean
distance.

The result of this process elimanates more than the soloist,
of course, since the accompanying instruments also contributed
to the STFT in the region we have masked out. A possible rem-
edy is the main focus of our paper, treated in what follows.

3. Pastial-wise Amplitude Estimation
In this section we state our technique to decompose spectrogram
magnitude into note-based models that can incorporate informa-
tion from a note sample library. A technique aimed to estimate
the solo mask without repairing the damaged orchestra area is
documented in [10]. To address those supposedly masked-out
partials in collision, we state our adaption of this technique in
the following.

3.1. Parameterization of the Music Given the Score

From the score, suppose we have a collection of notesN in the
piece of interest, for a note n ∈ N , we know its instrumentation
in ∈ I where I is the set of instruments in this piece and can
be further partitioned into disjoined subsets Is and Ia for solo
and accompaniment instruments separately.

Moreover, we know the time span of note n: Tn =
{tonn , . . . , toffn } from the score following. Also, as the note
pitch pn indicates its set of valid harmonics under a certain
Nyquist frequency: Hn = {1, . . . , Hn} 1, we confine the
frequency bin span of each partial h ∈ Hn to Kn,h =

{klown,h , . . . , khighn,h }. Kn,h implements a band-pass filter to spec-
ify a frequency bin span where the contribution from the partial
of interest (very likely to be mixed with other partials of close
frequencies) is significant in terms of spectrogram magnitude
while the spectral energy outside of Kn,h is ignored.

Such 2-dimensional, rectangular time-bin support Bn,h =
{(t, k)|t ∈ Tn, k ∈ Kn,h} specifies a band-passed filter bank

1Hn does not reach its theoretical maximum due to the smearing
effect of changing frequency within a fixed length DFT - some higher
partials that cannot be used in our unmasking are skipped

over Tn to extract time domain partial ph(s) from X(t, k) We
denote Bn = Bn,1 ∪̇ . . . ∪̇ Bn,Hn to be the support for all
harmonic components of note n.

We then assume a Normal mixture model for the spectro-
gram magnitude of an orchestra note n: each harmonic of the
note is one Gaussian component in the mixture with normal-
ized weight νn,h, coupled frequency bin expectation µn,h(t) =
hµn,1(t), and unknown variance σn,h. To accommodate the
(possibly dramatic) change in amplitude over time of a note,
we also introduce a normalized non-negative profile, ηn,h(t),
to outline the frame-wise amplitude of hth partial of nth note.

Strictly, the centroid of each partial may not be precisely
coupled by µn,h(t) = hµn,1(t). But it is approximately true for
all the instruments except for piano in our study. To summarize:

• a weight νn,h > 0 for ∀(n, h) with
P
h∈Hn

νn,h = 1

• a time support Tn = {tonn , . . . , toffn }, which is shared
among all partials of note n

• an amplitude envelope ηn,h(t) > 0 for ∀(n, h) withP
h∈Hn

ηn,h(t) = 1

• a frequency bin support Kn,h = {klown,h , . . . , khighn,h }
• a frequency bin centroid µn,h(t) which reflected the fre-

quency of partial h at t. Among different partials, they
are coupled by µn,1(t) =

µfn,h(t)

h

• a frequency bin variance σn,h that describes magnitude
distribution of partial h over frequency bins with expec-
tation µn,h(t) under Normal assumption.

Finally we can define a“template” function qn,h(t, k)

=

8<: 0, ∀(t, k) : t /∈ Tn or k /∈ Kn,h

νn,hηn,h(t)f(k;µn,h, σ
2
n,h); otherwise

(3)

where f(k;µn,h, σ
2
n,h) is the probability density function of

normal distribution. This parameterization is subjected to nor-
malization to ensure

P
h∈Hn

P
(t,k)∈Bn,h

qn,h(t, k) = 1 for
note n.

3.2. Learning Parameters from Note Samples

To fully use the acoustics knowledge implied in the score (e.g.
instrumentation in and pitch pn), we learn the parameters in
eq. 3 from note samples of the same instrument and a close, if
not the same, pitch. Burred et. al. [17] developed timbre mod-
els that capture the instrument characteristics by concatenating
notes of the same instrument but different pitches with enve-
lope interpolation. But we favor a pitch-specific model simply
because there is no need to compromise f0-dependent informa-
tion for compactness or generalization in our application as in
the instrument identification problem by Kitahara et. al. [18].

The learning process varies according to the number of note
samples available. Having a commercial note sample library as
well as recorded notes played in different styles and in isolation,
which fully covers every pitch that we have in N in the piece,
we sample a probabilistic distribution of νn,h for note n of pitch
pn from a collection of note samples of pn played in different
styles. After estimating the frequency of a note sample, we can
easily treat the problem of estimating σn,h for each harmonic h
as one of a normal distribution with known mean and unknown
variance; also, we use an exponential decay function in the en-
velope ηn,h(t) for in ∈ Ipiano and simply fix ηn,h(t) = 1 for
all the orchestra notes. Kn,h is chosen as a “confidence inter-
val” according to the estimate of σn,h, usually 2-4 frequency
bins under SR = 8000Hz, 512-point DFT.



3.3. Statistical Assumption

Our assumption is that the magnitude contribution from each
note partial indexed by (n, h) to the spectrogram is raised
from a collection of independent Poisson random variables
{Zn(t, k)} for (t, k) ∈ Bn [6]. The expectation of Zn(t, k)
is δn

P
h qn,h(t, k) where δn describes the degree to which

Zn(t, k) contributes to X(t, k).

|X(t, k)| =
X
n∈N

Zn(t, k) (4)

Strictly, additivity on the spectrogram only holds for complex
entry X(t, k) but we adapt the Max-Approximation discussed
in [6] to support the magnitude additivity in t-f cells in eq. 4.

3.4. EM algorithm

With the above assumption, we use EM algorithm to estimate
δn. At rth iteration

• E-step to estimate E[Zn(t, k)||X|] using δrn

Crn(t, k) =
δrn
P
h∈Hn

qrn,h(t, k)|X(t, k)|P
m∈N δ

r
m

P
h∈Hn

qrm,h(t, k)
(5)

• M-step to re-estimate δr+1
n

δr+1
n =

X
(t,k)∈Bn

Crn(t, k) (6)

Intuitively, δn is our estimate of the total spectrogram mag-
nitude contribution from note n.

4. Partial-wise Phase Estimation and
Transformations

As usually only a subset of partials of a note is damaged by
removing the solo partial, we hope to exploited the harmonic-
ity assumption in wind and string instruments supported by
Fletcher [13] and Brown [14] to impute the phase of those miss-
ing partials in the orchestra. To do so, we first introduce a
generic method to decouple the phase and slow-changing am-
plitude of a band-limited signal in 4.1 which enables our two
major tools to “unmask” the damaged spectrogram: harmonic
transposition in 4.2 and phase-locked modulation in 4.3.

4.1. Phase Estimation by Kalman Smoothing

In this section we represent our note partial, ph(s), in terms of
a time-varying amplitude and phase:

ph(s) ≈ αh(s) cos(θh(s))

where the time-varying amplitude, αh(s), is non-negative and
varies slowly compared with ph(s), and the “unwrapped” phase
(see Fig. 2) function, θh(s), is monotonically non-decreasing.
A more precise review of the slow-changing αh(s) in a sinu-
soidal model is given by Rodet [20].

In order to estimate αh(s) and θh(s) we follow the model
of Taylan Cemgil [11] and view the harmonic, ph(s), as the
ouput of a Kalman filter model [21] [22]. To this end we
define a sequence of two-dimensional state vectors {x(s) =
(x1(s), x2(s))t} where x1(0) and x2(0) are independent 0-
mean random variables with variance γ2, and the remaining
variables follow evolution equation x(s + 1) = Ax(s) +

Figure 2: Wrapped and Unwrapped Phase

w(s) where {w(s)} is an independent sequence of 0-mean 2-
dimensional vectors with independent components of fixed vari-
ance σ2. A is the rotation matrix, defined in terms of the ex-
pected phase advance per sample, ρ, which is directly com-
putable from the nominal frequency of the partial:

A =

„
cos ρ sin ρ
− sin ρ cos ρ

«
Thus, x(s) is a sequence of vectors that circle around the origin
and an approximately known frequency with variable distance
from the origin. We then model our observed partial as ph(s) =
x1(s) + v(s) where {v(s)} is another sequence of independent
0-mean variables with variance σ2.

It is well known that the Kalman filter allows
straightforward computation of the conditional distri-
bution, p(x(s)|{ph(s′)}), and that this distribution is
Normal for each value of s. Thus we estimate x(s) by
x̂(s) = E(x(s)|{ph(s′)}). The representation of the partial in
terms of amplitude and non-decreasing phase follows from the
polar coordinate representation of x̂(s):

αh(s) =
q
x̂2

1(s) + x̂2
2(s)

θh(s) = 2πk(s) + tan−1(
x̂2(s)

x̂1(s)
)

where each k(s) is chosen to be the non-negative minimal inte-
ger value that ensures that θh(s) is non-decreasing.

Note that for phase sequence θh(s), s ∈ {1, . . . , S}, not
only the final phase estimate θ̂h(S) but also all previous phases
estimates are of interest. To get the “best” phase estimation, we
need to update the state estimates backward to incorporate the
observation that were not “available” at sample s in the forward
pass. This motivates Kalman smoothing (see chapter 5 of [22])
which calculates the smoothed phase estimate θ̂h(s) recursively
backward from the last sample at S.

4.2. Harmonic Transposition

With amplitude αh(s) and phase θh(s) decoupled from hth har-
monic of a note, we are ready to “project” one harmonic into a
different harmonic while maintaining the harmonicity between
the source and the destination. Supposing we estimated the un-
wrapped phase of the ith harmonic as θi(s), the “projected”
phase sequence at jth harmonic is given by θ̃j(s) = jθi(s)

i
and

the resulting jth harmonic by

p̃j(s) = α̃j(s) cos(
jθi(s)

i
) (7)



Figure 3: Unwrapped Phase Difference

where α̃j(s) is either known or imputed amplitude at jth har-
monic. In this work, we usually have an estimate of α̃j(s) from
the decomposition of spectrogram magnitude described in 3.

Our harmonic transposition exploit such “harmonicity” be-
tween partials, which is a well-studied phenomenon. Early
work mainly by Fletcher showed that frequencies of the partials
in“the middle portion of the tone” of string instrument are inte-
gral multiples of the fundamental frequency by using sonograph
and also derived that partials of string and wind instrument are
“rigorously locked into harmonic relationship” [13]. By us-
ing single frame approximation on a variety of digital samples,
Brown concluded that “continuously driven instruments such
as the bowed strings, winds, and voice have phase-locked fre-
quency components with frequencies in the ratio of integers to
within the currently achievable measurement accuracy of about
0.2%” [14].

To demonstrate such harmonicity in our framework, we fo-
cus on the “projection” of the unwrapped phase θi(s) from par-
tial i to partial j by

θi,j(s) =
jθh1(s)

i
(8)

By “projecting” the phase of different partials to a common har-
monic, we can examine such phase relation on a variety of or-
chestra instruments. We can visualize pairwise phase difference
θi,1(s)−θj,1(s) at the fundamental for any i 6= j. Fig. 3 shows
the pairwise phase difference for the first 4 notes from a perfor-
mance of the first movement of Stravinsky’s Three Pieces for
Clarinet Solo. The salient message from this plot is: the pair-
wise phase difference is in a very small range (mostly (−π

2
, π

2
))

and never drifts away over the entire note; the error (includ-
ing measurement error and true difference) is not accumulative.
This supports our approximation of phase coherence.

Piano and other impulsively driven instruments such as
strings played pizzicato are counter-examples whose partials
deviate from integer ratios due to the stiffness of the string [14].

4.3. Phase-locked Modulation

In addition to the partial-wise relationship, we want to exploit
timewise similarity in terms of phase and amplitude within one
note.

Suppose we have a partition T1 = {s1, . . . , sk − 1}, T2 =
{sk, . . . , s2} on the sample indices T = {s1, . . . , s2} of the
sustaining part of a reasonably long orchestra note, we can only
observe the unwrapped phase sequence at θh(T1) but θh(T2) is
missing. We can impute θh(T2) sequentially by

θh(sk+n) = θh(sk+n−1)+θh(s1+1+n)−θh(s1+n) (9)

for any 0 ≤ n ≤ s2−sk. We omit the formula to obtain θh(T1)
if we observe θh(T2).

This operation reserves the phase advance per sample in T1

and applies such ∆θh(T1) cyclically to T2. This is similar to
the phase vocoder except for that we are doing it on the sample
level rather than frame level. For a long enough time span T1,
we are capturing the pattern of frequency fluctuation in θh(T1).
To synthesize a segment of a partial, we also need the amplitude
envelope over T2. A simple solution is to reuse the average am-
plitude αh over T1 (with some minor modulation) to “sustain”
a note through the end of T2. If the orchestra note is holding
for quite long, which is common in some orchestration, we are
effectively synthesizing the sustaining part of the partial.

5. Spectrogram Unmasking
In an attempt to fix the damage caused by desolo, we examine
the spectrogram with a focus on areas where the accompani-
ment notes (harmonics) are damaged.

Our assumption is that there is information redundancy in
terms of phase and amplitude between the “observable” partials
(i.e. not significantly overlapped by the solo or an accompa-
niment instrument of a different family) and damaged partials.
Our hope is to “copy and paste” musical partials from the ob-
servable area to the damaged area with some necessary trans-
formations that exploit those redundancy to maintain the con-
sistency between the observable and the damaged. These pro-
cedures can be automated by analyzing the texture of the music
from the score and testing the soundness of remaining partials
on the desoloed spectrogram. We call this process unmasking
in which the masked-out solo regions will be recovered.

In the type of music that we (and many solo musicians) are
mainly interested in, for instance, a piano concerto, it is com-
mon that a string section may double the solo instrument at the
unison, fifth, or octave in either direction. In these cases, mask-
ing out the solo part usually results in many damaged partials in
the orchestra since consonant intervals mean more partials are
likely to share the same frequencies. With this in mind, we use
some heuristics to create an algorithm to automatically perform
the two partial-wise transformations developed in 4.2 and 4.3.
Since the texture of the music can be highly complex, we re-
construct a somewhat “generic” scenario for illustration of this
algorithm in Fig. 4. The 1-bar score in the figure is a reduc-
tion from a piano concerto where the piano part is frequently
doubled by the lower string sections.

Supposing we have obtained solo mask 1s(t, k), a damaged
region Bdn,h ⊆ Bn,h, a template gn,h(t, k) and an amplitude
estimate δn from section 2 and 3 for a damaged partial h of
note n, we summarize our heuristic algorithm below:

First, we need to evaluate the damage. IfP
(t,k)∈Bd

n,h
gn,h(t, k)�

P
(t,k)∈Bn,h

gn,h(t, k),
we leave it as intact; otherwise we need to repair it. Specially, if



Figure 4: Evaluating Desolo Damage and Possible Fix Using Both Score and Spectrogram

undamaged part Bn,h r Bdn,h is a narrow band-limited “strip”
(e.g. a single frequency bin), we need to “expand” the solo
mask to remove those initially deemed “undamaged” f-t cells
as well because such residue tends to create artifact “musi-
cal noise” whose suppression deserves treatment, mostly from
speech enhancement [12]. After such extra “masking”, we use
Bun,h ⊆ Bn,h to denote the remaining undamaged region.

Second, since Bn1,h1 ∩ Bn2,h2 6= ∅, n1 6= n2 for pos-
sibly many different note partials contributing energy to the
same region, we choose one damaged orchestra partial (n, h)
to repair: argmax

(n,h)

P
(t,k)∈Bn,h

δngn,h(t, k) assuming Max-

Approximation that only one signal dominates in each time-
frequency cell [6].

Third, in the score we look for consonant intervals such as
octaves, perfect 5th and perfect 4th in the hope to find an ob-
servable partial whose frequency is in a relatively simple ratio
to the damaged one waiting to be “transposed” to. We call this
partial, if exists, a candidate. Usually more than one candidate
exist. Large modulus value, simple frequency ratio and identi-
cal instrumentation are factors that we favor in choosing the best
candidate without creating artifacts. Thus, harmonic transposi-
tion can be performed vertically on the spectrogram (e.g. from
3rd to 5th harmonic of viola note B3 in Fig. 4) if the duration of
the candidate partial covers that of the damaged area.

Forth, when there is no candidate partial for the partial in-
dexed by (n, h), if there exists a partial (m, i) whose time sup-
port of its undamaged portion Tum,i is adjacent to the damaged
duration T dn,h and whose frequency bin support Km,i satisfies
Kd
n,h ⊆ Km,i we can perform phase-locked modulation with

differenced phase sequence estimated from Bum,i to Bdn,h. The
2 cello partials in Fig. 4 are repaired this way.

Occasionally, we are unable to perform either transforma-
tion and label the damaged partial as such.

6. Experiment Results
We experiment with an excerpt of 45 seconds from the 2nd
movement of Ravel’s piano concerto in G major.

Table 1 lists a breakdown of the number of partials and the
number of harmonic transpositions and phase-locked modula-
tion that our algorithm performed. The second column gives the
number of partials that have significant spectral energy below
Nyquist frequency at SR=8000Hz. Among them, many need
to be repaired depending how frequently they collide with the
piano. The last column, “unable to fix” gives the number of
occurrences that no undamaged orchestra partial is available to
estimate phase from. We relax on that the 4 sections of string
instruments can be used to repair each other by harmonic trans-



note partial tran.
from

tran.
to

modu-
lation

unable
to re-
pair

oboe 20 85 1 1 0 1
clarinet 6 18 3 3 0 0
flute 6 18 0 0 0 0
violin1 5 42 14 9 0 0
violin2 11 107 34 24 24 2
viola 16 160 33 41 64 5
cello 12 120 43 50 22 6

Table 1: Instrument breakdown of partials being repaired

position but do not allow any harmonic transposition between
two different instruments in the woodwind family. This is be-
cause the oboe is sharper than the other two in this excerpt. At
the end the most of damaged partials are fixed in some way.
We also notice that the woodwinds are less damaged because
the notes are very high pitched and too loud to yield to the solo
piano at their time-frequency region, while the lower string in-
struments are frequently damaged.

The original, desoloed-but-unrepaired and repaired audio
are available at our demo website [24] to evaluate the solo
mask and improvement from unmasking. Plots in color giving a
breakdown of the partials on the spectrogram are also available.

7. Conclusion, Evaluation and Future Work
Instead of merely extracting one source (instrument) of sound
from the mixture, we distinguish our proposed ISS method from
other known source separation methods by our explicit repair
stage that addresses the audio degradation caused by the sepa-
ration procedure. This stage significantly enhances the percep-
tual audio quality and boosts performance measurement such as
distortion due to interferences proposed by Vincent et al. in [5].
That the reconstructed note sounds plausible for some orches-
tra instruments suggests that the partial-wise phase/amplitude
relationship is a potentially fruitful topic to investigate.

At this stage, we admit that the comparison of our method
of “unmasking” with other missing data inference techniques
such as [23] is not available and hence is our future work. An
ideal evaluation of any method of solo/orchestra separation re-
quires a “ground truth” of the two sources recorded separately
and an artificial mix of the two. However, such “ground truth” is
almost away absent in the real case and the evaluation is mainly
subjective. To explore this open-ended problem, we use in-
teractive visualization and auralization to experiment with the
“reconstructed” partials under different settings. Using a music
sample library, we can artificially construct ground truth accord-
ing to the score while maintaining the texture of the music of
interests. Some early exploration can be found at [24] as well.
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