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Abstract

We propose an online speech source separation technique in a

meeting situation. The purpose in this paper is online extrac-

tion of each speech source from multichannel microphone in-

put signal which is contaminated by speech sources of the other

persons (noise sources). The proposed method is one of adap-

tive beamformers. The proposed method estimates the noise

covariance matrix of the multichannel microphone input sig-

nal as a weighting average value of a noise covariance matrix

of each speech source that is estimated offline. Weighting is

done by using estimated activity of each speech source. By us-

ing the proposed method, even when the noise covariance ma-

trix of microphone input signal changes rapidly due to nodding,

interruption, or turn taking, the speech sources can be sepa-

rated. Experimental results indicate that the proposed method

can track rapid change of the noise covariance matrix and the

speech sources can be separated correctly.

Index Terms: speech source separation, online algorithm,

beamforming

1. Introduction

Noise reduction techniques are greatly required for recording

equipments which are used in a meeting situation. In the

meeting situation, speech sources frequently overlap. Multiple

speech sources are required to be separated. Conventional noise

cancellers with a single microphone (e.g., [1]) is not suitable for

separation of speech sources, because these noise cancellers can

separate only stationary noise sources and cannot separate non-

stationary noise sources such as human speech sources. Re-

cently, multichannel separation techniques have been widely

applied for meeting analysis (e.g., [2, 3, 4]). Many conven-

tional approaches are offline approaches. There is some latency

between recording and separation. When speech source sepa-

ration is used for realtime applications such as realtime tran-

scription, speech sources are required to be separated online. In

this paper, we focus on online speech source separation. Adap-

tive null beamformers (e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13]) or

blind source separation techniques such as independent com-

ponent analysis (ICA) [14] are famous approaches as speech

source separation techniques. ICA is a offline speech source

separation technique, and ICA is not suitable for online speech

source separation. Conventionally, adaptive beamforming tech-

niques are frequently used for online speech source separation

[6, 7, 8, 9, 11]. For speech source separation, the noise co-

variance matrix is required to be estimated accurately. In the

conventional methods, the noise covariance matrix is gradually

updated by using an exponential decay coefficient. The sepa-

ration filter also change gradually as a result (or the separation

filter itself is updated gradually by LMS (Least Mean Square)

like algorithms). However, the assumption that the noise covari-

ance matrix change slowly is problematic. The noise sources

suddenly appear such as nodding, interruption, or turn taking.

Therefore, the exponential decay coefficient is required to be

small to track change of the noise covariance matrix. However,

the spatial covariance matrix with a small exponential decay co-

efficient becomes a singular matrix frequently, and adaptive fil-

ters diverge easily. Therefore, rapid tracking capability for the

speech sources without divergence is required to separate the

desired source online. Updating of the noise covariance matrix

with a small exponential decay coefficient is equivalent to esti-

mation of the noise covariance matrix with few samples. From

a viewpoint of learning theory, divergence can be regarded as

a result of over-fitting. To avoid over-fitting, the number of the

parameters to be learned online is required to be reduced. In

this paper, we divide the noise covariance matrix into a time-

invariant component and a time-variant component. The loca-

tion of each speech source can be assumed to be time-invariant.

Therefore, the covariance matrix of each speech source can be

assumed to be also time-invariant. On the other hand, activity

of the speech sources change rapidly due to nodding, interrup-

tion, or turn taking. Focusing on the fact that the covariance

matrix of each speech source is time-invariant and only activ-

ity of each speech source is time-variant, the proposed methods

estimate only activity of each speech source online. The covari-

ance matrix of each speech source is updated offline. By the

proposed method, the number of the learning parameters can be

reduced, and the covariance matrix of each speech source rarely

diverge. The noise covariance matrix is estimated as a weight-

ing average of the covariance matrix of each noise source with

the estimated activity of the corresponding noise source.

2. Input signal model

Input signal in each microphone is converted into time-

frequency domain by short-term Fourier transform (STFT).

Multichannel input signal at each time-frequency point is de-

picted as follows:

x(f, τ) = [ x1(f, τ) xm(f, τ) xM (f, τ) ]T , (1)

where xm(f, τ) is the m-th microphone input signal, T is the

operator for transpose of a matrix or a vector, M is the number

of the microphones, f is the frequency index, and τ is the frame

index. Multichannel input signal can be modelled as follows:

x(f, τ) =

N
X

n=1

sn(f, τ)an(f), (2)



where N is the number of the speech sources, sn(f, τ) is the

original signal of the n-th speech source, and an(f) is the

steering vector of the n-th speech source. Goal of speech

source separation is defined as extraction of each speech sig-

nal sn(f, τ)an(f) from microphone input signal x(f, τ) in this

paper.

3. Proposed method

3.1. Overview of proposed method

Block diagram of the proposed online speech source separation

is shown in Fig. 1. The proposed method is composed of two

Figure 1: Block diagram of proposed method

blocks. The first block is “Online speech separation”. The first

block is an online block. This block is executed framewisely.

In the first block, activity of each speech source is estimated at

each frame. The noise covariance matrix is estimated based on

the estimated activity of each speech source. Speech separa-

tion is performed by minimum variance beamformer (MVBF)

[5]. The MVBF filter is updated by using the estimated noise

covariance matrix framewisely. Extracted speech sources are

converted into time domain by inverse STFT. The second block

is an offline block. In this block, the noise covariance matrix of

each noise source is estimated offline. The estimated covariance

matrices are utilized in the first block.

3.2. Speech separation based on MVBF

Each speech source is separated as follows:

yn(f, τ) = wn(f, τ)x(f, τ), (3)

where wn(f, τ) is the time-varying multichannel separation fil-

ter that extracts the n-th speech source, and yn(f, τ) is the

extracted n-th source signal. wn(f, τ) is obtained based on

MVBF [5] as follows:

wn(f, τ) =
ân(f, τ)H

Rn(f, τ)−1

ân(f, τ)HRn(f, τ)−1ân(f, τ)
, (4)

Rn(f, τ) =
X

ń6=n

‖sń(f, τ)‖2
ań(f)ań(f)∗, (5)

where ân(f, τ) is estimation of the steering vector of the n-th

speech source, Rn(f, τ) is the noise covariance matrix that ex-

cludes the n-th source signal, and ∗ is the operator for the con-

jugate of a complex value. Rn(f, τ) is drastically time-varying,

because activity of each speech source change rapidly. Theoret-

ically, from Eq. 2, the time-varying noise covariance matrix can

be rewritten as follow:

Rn(f, τ) =
X

ń6=n

αń(f, τ)Rf,ń, (6)

where

αń(f, τ) = ‖sń(f, τ)‖2
, (7)

Rf,ń = ań(f)ań(f)∗. (8)

Rf,ń is the covariance matrix of the ń-th speech source.

αń(f, τ) can be regarded as activity of the ń-th speech source at

each time-frequency point. Commonly, activity of each source

synchronizes among frequencies. In this paper, αń(f, τ) is ap-

proximated as a frequency-independent value αń(τ). There-

fore, αń(τ) and Rf,ń are required to be obtained to achieve

the time-varying multichannel separation filter wn(f, τ). In the

proposed method, these two variables are obtained by different

ways. Rf,ń is independent of the frame index, and Rf,ń is es-

timated offline. On the other hand, αń(τ) is depending on the

frame index, and αń(τ) is estimated framewisely. Estimation

of the steering vector of the n-th speech source is obtained as

follows:

ân(f, τ) = max eigRf,n, (9)

where max eig returns the eigenvector whose eigenvalue is

maximum among all eigenvalues.

3.3. Calculation of time-varying weights of noise covari-

ance matrices

If the covariance matrix of the multichannel input signal can be

obtained, αn(τ) can be naturally estimated by minimizing the

following cost function:

D(τ) =
X

f

‚

‚

‚

‚

‚

N
X

n=1

αn(τ)Rf,n − R(f, τ)

‚

‚

‚

‚

‚

F

, (10)

R(f, τ) = E[x(f, τ)x(f, τ)H ] (11)

where E is the operator of the mathematical expectation, H is

Hermite transpose of a matrix or a vector, and ‖x‖F is Frobe-

nius norm of the matrix x. However, R(f, τ) cannot be ob-

tained. In the proposed method, R(f, τ) is approximated by

R̂(f, τ) which is defined as follows:

R̂(f, τ) =

d=τ
X

d=1

λ
τ−d

x(f, τ − d)x(f, τ − d)H
, (12)

where λ is an exponential decay coefficient, and λ is less than

1. By adjusting λ to a small value, R̂(f, τ) is expected to

be close to the correct covariance matrix R(f, τ). However,

R̂(f, τ) with a small λ is a singular matrix, because R̂(f, τ)
contains microphone input signals at only few frames. There-

fore, R̂(f, τ) is not suitable as an alternative of Rn(f, τ) in

Eq. 4. In the proposed method, R̂(f, τ) is used indirectly for

estimation of αn(τ). Even when R̂(f, τ) is a singular matrix,
PN

n=1 αn(τ)Rf,n is not a singular matrix under the condition

that Rf,n is not a singular matrix. In the proposed method,

Rf,n is estimated offline. When Rf,n is updated slowly, Rf,n

is far from a singular matrix. The cost function for time-varying

weights of noise covariance matrices is defined as follows:

D(τ) =
X

f

‚

‚

‚

‚

‚

N
X

n=1

αn(τ)
Rf,n

trace{Rf,n}
−

R̂(f, τ)

trace{R̂(f, τ)}

‚

‚

‚

‚

‚

F

,

(13)

where trace{x} is the trace component of the matrix x, the cost

function is normalized among frequencies by dividing the co-

variance matrix by its trace component. αn(τ) which mini-

mizes D(τ) can be obtained as follows:

¸(τ) = V
−1

C, (14)



¸(τ) = [ α1(τ) . . . αN (τ) ]T , (15)

where

[V ]n,ń =
X

f,i,j

[Rf,n]∗i,j [Rf,ń]i,j , (16)

[C]n =
X

f,i,j

[Rf,n]∗i,j [R̂(f, τ)]i,j , (17)

where [x]i,j is the i-th row and the j-th column element of

x, and [x]i is the i-th row element. When αn(τ) is negative-

valued, αn(τ) is replaced by 0. Finally, αn(τ) is normalized as

follows:

αn(τ) ←
αn(τ)

‖αn(τ)‖
. (18)

3.4. Covariance matrix estimation by weighted k-means

A covariance matrix of each speech source is updated at every

B frames interval by a semi-offline approach. Similarly to a

conventional observed vector clustering approach proposed by

Araki, et al., [15], the covariance matrix is obtained by clus-

tering the input signal under the sparseness assumption that the

number of the sources in each time-frequency point is assumed

to be 1. Under the sparseness assumption, there is one active

source in the time-frequency point, and the multichannel mi-

crophone input signal can be approximated as follows:

x(f, τ) ≈ sactive(f, τ)aactive(f), (19)

where active is the active source index. The covariance matrix

of each speech source is obtained by minimizing the following

cost function:

G(Rf,1(b), . . . , Rf,N (b), I) =

X

τ

‖x(f, τ)‖P

‚

‚

‚

‚

Rf,I(f,τ)(b) −
x(f, τ)x(f, τ)H

‖x(f, τ)‖2

‚

‚

‚

‚

F

,(20)

where b is the number of updates, P is the coefficient that con-

trols the weight for the corresponding time-frequency point,

and I(f, τ) is the index of the noise cluster in which x(f, τ)
is segregated. When P is close to 0, each time-frequency

point is equally weighted. On the other hand, when P is large

value, time-frequency points in which microphone input signal

is small is small weighted. The cost function C(Rf , I) can

be minimized by the weighted k-means algorithm. Even when

Rf can be correctly estimated at each frequency bin separately,

permutation problem is remained. The permutation problem is

solved by the power-envelope correlation [16]. Only the power

component of the active source is set to be 1, and the power

components of the other sources are set to be 0. The effect of

P is evaluated. The experimental result is shown in Fig. 2. The

experimental condition is the same condition in the experiment

of the latter section. In “No weight”, P is 0. In “Weighting”,

P is set to be more than 0. The evaluation measure is noise re-

duction ratio (NRR) which is defined in the latter section. NRR

can be improved by choosing P > 0 and P < 1.5.

3.5. Hierarchical clustering of noise covariance matrices

When the number of clusters in the weighted k-means algo-

rithm is more than the correct number of the active sources in

B frames, a same source is divided into multiple clusters. To

overcome this problem, we adopt a hierarchical clustering of

the covariance matrices based on a direction-of-arrival (DOA)

Figure 2: An evaluation result of covariance matrix estimation

method by weighted k-means

estimate of each cluster. The DOA of each cluster is estimated

by a similar way to SRP-PHAT [17] as follows:

θn(b) = argmax
θ

X

f

aθ(f)H
Rf,n(b)aθ(f)

trace{Rf,n(b)}
, (21)

where aθ(f) is the virtual steering vector at DOA=θ. In this

paper, speech sources are located at a same horizontal plane.

Therefore, θ is set to be the azimuth angle of a speech source.

The closest pair of clusters is extracted as follows:

(n1, n2) = argmin
n1<n2

max
u

|θn1
(b) − θn2

(b) + 360u|, (22)

where u is an arbitrary integer. When the difference between

θn1
and θn2

is less than predefined threshold, these clusters are

merged. Otherwise, the merging process stops. When two clus-

ters are merged, the noise covariance matrix is also merged as

follows:

Rf,n1
(b) ← Rf,n1

(b) + Rf,n2
(b), (23)

Final clusters are assigned to the nearest speech source as fol-

lows:

ń = argmin
ń

|θń − θn(b) + 360u|, (24)

where

θń = −180 +
360(ń)

N
. (25)

Therefore, the horizontal plane is divided into N regions. each

speech source is assigned into one region of the N regions.

When the number of the clusters which is assigned to ń is more

than 0,

Rf,ń ← βRf,ń + (1 − β)
X

n∈Ω
ń

Rf,n(b), (26)

where Ωń is a set of the clusters that are assigned to the ń-th

source.

3.6. Summary of proposed method

In the proposed method, offline covariance matrices are esti-

mated parallel to online speech separation.

Offline covariance matrices estimation

1. Microphone input signals are clustered by weighted k-

means (minimization of G defined in Eq. 20).

2. Covariance matrices are merged hierarchically.



Figure 3: Simulated environment

Figure 4: A real meeting room for EXP 2

3. The covariance matrix of each speech source is updated

by Eq. 26.

Online speech separation

1. The time-varying weights are estimated by Eq. 14.

2. Covariance matrix is obtained by R̂n(f, τ) =
P

ń6=n
αń(τ)Rf,ń.

3. Steering vectors are estimated by Eq. 9.

4. The separation filter is obtained by Eq. 4.

5. Each speech source is separated by Eq. 3.

4. Experiment

The proposed method was evaluated by using simulated impulse

responses (EXP 1) and by using measured impulse responses in

a real meeting room (EXP 2). The simulated impulse responses

were made by room impulse response generator [18]. The num-

ber of the speech sources was set to be 4 in each experimental

environment. The number of the microphones is 3. Therefore,

from acoustical point of view, the experimental condition is an

underdetermined condition. The simulated experimental envi-

ronment is shown in Fig. 3. An equilateral triangle one side

of which is 4 cm was used. In EXP 1, reverberation time was

changed from 0.2 [sec] to 0.6 [sec]. The experimental envi-

ronment in a real meeting room is shown in Fig. 4. The im-

pulse responses were measured by using a TSP (time-stretched

pulse) signal [19]. An equilateral triangle one side of which

is 5 cm was used. Sampling rate was 8 kHz. The evaluation

data was made by convolution of dry sources with the impulse

responses. The dry sources were picked up from RWCP-SP01

database [20]. This database contains recorded sound at several

meeting situations. Speech of each speaker was recorded by a

close-talking microphone, and this signal was regarded as a dry

source. From RWCP-SP01, we utilized 3 meetings (meeting

IDs=M01,M02,M04). Language was Japanese. In each meet-

ing, there were 4 participants. Time-length of each meeting was

about 19-22 min. Other conditions are shown in Table 1. The

Table 1: Experimental conditions.

type value

frame size 512 pt

frame shift 256 pt

B 100

λ 0.4

β 0.9

P 1.0

evaluation measure is NRR (noise reduction ratio). NRR for

extraction of the i-th speaker is defined as follows:

NRR = 10 log10

P

t
‖

P

j 6=i
sj(t)‖

2

P

t
‖si(t) − ŝi(t)‖2

(27)

where ŝi(t) is a separated speech signal of the i-th speaker.

When speech sources are separated effectively with low distor-

tion, NRR takes high value. The proposed method with time-

varying weights which are obtained by Eq. 14 (“Time-varying

α”) was compared with two methods. The first method uses

constant weights in place of time-varying weights obtained by

Eq. 14 (“Constant α”). In “Constant α”, αn was set to be 1
N

.

The second method uses a time-invariant MVBF filter which

was made by using the accurate noise statistics from the whole

period in the meeting (“Batch”). The second method is the

upper-limit of the batch algorithm. The evaluation result of

EXP 1 is shown. The reverberation time was set to be 0.2 sec.

The experimental result is shown in Table 2 for each meeting

and each speaker. The proposed method (“Time-varying α”)

Table 2: Experimental result of EXP 1: reverberation time was

set to be 0.2 sec.

Meeting ID Speaker ID Constant α Batch Time-varying α

M01 M01 7.44 8.09 12.18

F01 4.88 13.10 10.41

M02 6.44 12.34 12.86

M03 8.42 12.65 13.55

M02 M03 8.14 10.63 15.06

M04 8.69 9.80 16.62

F02 7.19 14.53 13.80

F03 8.71 13.23 15.51

M04 M03 8.34 9.71 13.04

M04 6.84 9.23 11.32

F05 5.77 9.54 10.03

F07 7.52 9.20 11.48

outperformed “Constant α” and “Batch” in many cases. The

experimental results with various reverberation time (RT60) are

shown in Fig. 5. In Fig. 5(a), the experimental result for the

whole meeting period is shown. In (b), the experimental result



Figure 5: Experimental results with various reverberation time: Experimental environment is EXP 1

for the noise only period is shown. In (c), the experimental re-

sult for the period when the noise sources and the desired source

overlap is shown. In (d), the experimental result for the period

when there is only the desired source is shown. In only (d), the

evaluation measure is SNR (signal to noise ratio), because SNR

of the microphone input signal is infinite in this case and NRR

is meaningless in this case. In all cases, the proposed method

is superior to “Constant α”. The proposed time-varying weights

is shown to be effective. When RT60 is high, “Batch” and the

proposed method is close to each other. However, the proposed

method is superior to “Batch” at low RT60. Furthermore, the

proposed method is always superior to “Constant α”. Next, the

experimental result of EXP 2 is shown in Table. 3. The proposed

method is slightly inferior to “Batch”. However, the proposed

method is superior to “Constant α”. The proposed time-varying

weights is shown to be effective. The proposed method is an

online algorithm, but the proposed method is comparable to the

batch algorithm.

Table 3: Experimental result of EXP 2

Meeting ID Speaker ID Constant α Batch Time-varying α

M01 M01 2.13 1.81 3.64

F01 2.92 8.50 5.09

M02 2.35 7.78 4.72

M03 4.75 7.64 6.47

M02 M03 3.15 3.97 6.20

M04 4.62 6.64 7.69

F02 4.21 8.77 6.65

F03 4.01 7.62 6.73

M04 M03 4.29 5.70 5.56

M04 2.80 3.87 4.66

F05 2.78 6.69 4.62

F07 3.79 5.40 5.24

An example of time-varying weights is shown in Fig. 6.

The meeting ID is M01. Even when speech period is short,

it is shown that activity of each source is appropriately esti-

mated. Finally, a sample of output signal is shown in Fig. 7.

each speech source is shown to be separated effectively.

Figure 6: An example of time-varying weights

5. Discussions

The proposed method is composed of the online speech sep-

aration and the offline covariance-matrices estimation. In the

offline covariance-matrices estimation, the proposed method



Figure 7: A sample of output signal

adopts a clustering method based on the weighted k-means un-

der the assumption that speech sources rarely overlap at a same

time-frequency point. When the number of speech sources is

more than the number of microphones, the clustering method

is suitable for covariance-matrices estimation. However, even

when the number of participants in a meeting is more than the

number of microphones, the number of speech sources is usu-

ally less than the number of microphones in a short-time pe-

riod. Therefore, independent component analysis (e.g., [14]) is

also suitable for offline covariance matrices estimation. Study

of offline covariance matrices estimation based on independent

component analysis is regarded as a future work in this paper.

6. Conclusions

In this paper, we proposed an online speech source separation

technique in a meeting situation. Instead of the noise covari-

ance matrix with an exponential decay coefficient, the proposed

method estimates the noise covariance matrix as the weighting

average value of the noise covariance matrix of each speech

source that is estimated offline. Weighting is done by using

estimated activity of each speech source. From the experimen-

tal results with the simulated impulse responses and the impulse

responses with the real meeting room, the proposed method is

shown to be effective.
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