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ABSTRACT 

The Music Instrument Identification research is an im-

portant and difficult problem in Music Information Re-

trieval (MIR).  In this paper an algorithm based on flexi-

ble harmonic model is proposed to represent the pitch in 

music by Gaussian mixture structure.  The proposed algo-

rithm models each spectral envelope of underlying har-

monic structure to approximate the real music and uses 

EM algorithm to estimate the parameters.  Not only is it 

able to estimate the multipitch (F0) but it also takes the 

attack problem (a kind of inharmonic structure at the be-

ginning of some pitches) into account.  The proposed al-

gorithm makes it possible to envisage the use of timbre 

features derived from both harmonic part and attack part. 

Musical instrument recognition is then carried out by us-

ing SVM classifier.  Experiment shows high perfor-

mance of the proposed algorithm for instrument identifi-

cation task. 

1. INTRODUCTION 

Musical instrument identification task includes both 

estimation of music pitches and identification of each 

pitch to specific instrument. Although it has been consi-

dered as difficult problem, some approaches such as us-

ing Cepstral coefficient [1], Temporal features [2], Spec-

tral features [3] to deal with single instrument identifica-

tion have been developed.  For more difficult problem 

which is to identify the multi-instrumental polyphonic 

music, some previous research has also been done such as: 

frequency component adaptation [4], missing feature 

theory [5], and feature weighting to minimize influence 

of sound overlaps [6].  However, all of these researches 

need given correct F0 as the prior knowledge while in 

real application the correct F0 is not given actually.  

In our previous work, a generative modeling of har-

monic sound for multipitch analysis called Harmonic-

Temporal Clustering (HTC) [7] is developed.  HTC de-

composes the spectral energy of the signal in the time-

frequency domain into acoustic events, which are mod-

eled by using acoustic object models with a harmonic and 

temporal 2-dimensional structure.  Unlike conventional  

 

Figure 1. Flow chart of proposed system. 

 

frame-wise approaches such as [8, 9], HTC deals with the 

harmonic and temporal structures in both time and fre-

quency directions simultaneously.  However, HTC was 

not able to deal with attack problem which widely exists 

in musical pitches.  

In this paper, at first a flexible harmonic model capa-

ble of modeling both harmonic part and attack part of 

music is proposed to model the music pitches and esti-

mate F0s.  It uses Gaussian mixture structure to represent 

musical pitches and is able to estimate each mean para-

meter by EM algorithm from input musical signal.  Then 

a new approach based on classifying each pitch into tim-

bre categories according to their similarity with regard to 

the timbre features is proposed for musical instrument 

identification.  The proposed algorithm can both esti-

mates multiple pitches and identify the pitch to specific 

instrument.  Therefore it will not need any given prior 

knowledge, which makes this new algorithm efficient for 

real application. 

In Section 2, at first the proposed flexible harmonic 

model is introduced.  After the F0s are estimated by the 

proposed algorithm, the Harmonic Temporal Timbre 

Energy Ratio (HTTER) and Harmonic Temporal Timbre 

Envelop Similarity (HTTES) features are also generated 

from the proposed model. It is used to construct SVM-

based classifier for identifying each pitch to specific mus-

ical instrument.  In Section 3, the experimental results are 

demonstrated.  At last, the conclusion is made in section 

4.  The overall flowchart of the proposed system is illu-

strated in Figure 1.  The output of the proposed system is  
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Figure 2.  Profile of the kth pitch model  

 

 

Figure 3.  Cutting plane of            at time t.  

 

the estimated multipitch of the musical signal and the dif-

ferent color represents different instrument. 

2. HARMONIC TEMPORAL TIMBRE FEATURES 

FOR INSTUMENT IDENTIFICATION 

2.1 Flexible Harmonic Model 

In this section we discuss about how we build the flex-

ible harmonic model from the observed power spectro-

gram series W(x;t) of input music signal, where x is log-

frequency and t is time.  The proposed model tries to ap-

proximate the power spectrogram by assuming it is the 

sum of k parametric models            (see Figure 2).  

          represents the kth pitch model in the music 

and   represents the parameters in the model.  One pitch 

model is composed of fundamental partial (F0) and N 

harmonic partials.  The parameters of flexible harmonic 

model are represented in Table 1.   

Given the pitch contour       in kth pitch model, the 

contour of the nth partial is              (see Figure 

3).  The normalized energy density of the nth partial in 

the kth model can be assumed to be a multiplication of 

the power envelope of the nth partial          and the 

Gaussian distribution centered at             , 

        
    

     
                

      
 
           (1) 

satisfying  

        
 

    

Since we do not know in advance what the sources are, 

it is important to introduce a model as generic as possible 

for estimating the power envelope function. Therefore we 

should choose a function that is temporally continuous,  

 
Figure 4. Power envelope function         at frequency x. 

 

parameter Physical meaning 

      Pitch contour of the kth pitch 

   Energy of the kth pitch 

     Relative energy of nth partial in kth pitch 

       
Coefficient of the power envelop function of  

kth model, nth partial, yth kernel 

   Onset time 

        duration(Y is constant) 

   
Diffusion in the frequency direction of the 

harmonics 

    Mean of jth Gaussian in attack model 

   
 

 
Diffusion in the frequency direction of jth 

Gaussian in the attack model 

    
Coefficient of jth Gaussian distribution in at-

tack model  

Table 1. Parameters of flexible harmonic model 

 

nonnegative, having a time spread from minus to plus in-

finity (assuming the Gabor-wavelet basis as the mother 

wavelet) and adaptable to various curves.  Assume the 

spectra are obtained by the wavelet transform (constant 

transform) using Gabor wavelet basis function, the fre-

quency spread of the wavelet power spectra is close to a 

Gaussian distribution.  The assumption was justified 

based on the generalized Parseval’s theorem in [7].  To 

come up with a function satisfying all these requirements, 

we let the frequency spread of each harmonic component 

be approximated by a Gaussian distribution function 

when the spectra are obtained by the wavelet transform 

(constant Q transform) using Gabor wavelet basis func-

tion.  Denote         as the power envelope of the nth 

partial. 

         
      

       
 

       
            

 

     
                   (2)                  

  is the center of the Gaussian, which is considered as an 

onset time estimate,        is the weight parameter for 

each kernel, which allows the function to have variable 

shapes for each harmonic partial (see Figure 4).         is 

defined as the coefficient of the power envelop function 

of  kth model, nth partial, yth kernel.  It should be norma-

lized to satisfy                       .  



  

 

 

Figure 5.  Power spectrogram of oboe sound. 

 

 

Figure 6. The spectrogram of attack in a piano pitch. 

 

Figure 5 shows the spectrogram of oboe sound.  Three 

axes are frequency, time and power density respectively. 

From the figure we can see that the envelope of each par-

tial is different and has different information although 

there is also relationship between the partials.  To approx-

imate the envelop of each specific partial, the proposed 

model is actually estimating the parameters for each par-

tial even in the same model          .   

The model           is expressed as a mixture of 

Gaussian mixture model (GMM) with constraints on the 

kernel distributions: supposing that there is harmonicity 

with N partials modeled in the frequency direction, and 

the power envelope is described using Y kernel distribu-

tion in the time direction.  The model can be written in 

the form 

         ＝                                                           

And the Kernel distribution can be written in the form 

              

            

      
 
 
              

 

   
  

            
 

       
 

                    

Therefore the model           is the mixture of Gaus-

sian distribution              .  And the whole model is 

the mixture of the pitch model           .  

2.2 A New Model for Attack Problem 

In this section we discuss about how we model attack 

of the harmonic instruments.  The term attack is defined 

to represent the inharmonic phenomenon at the very be-

ginning of some pitches played by harmonic instruments. 

In the attack part the harmonic structure appears slightly  

 
Figure 7. Power spectrum of attack in a piano pitch. 

 

     Figure 8. The representation of the proposed model. 

 

unclearly.  For example, Figure 6 is the spectrogram of a 

piano pitch, at the beginning of the pitch we can see the 

attack part which is indicated by rectangle. In attack part, 

the harmonic partial cannot be distinguished clearly like 

the pitch without attack, which makes the harmonic tem-

poral modeling difficult. 

To show it more clearly we draw the three dimensional 

power spectrum in the left part of Figure 7, which is not 

very harmonic model such as Figure 3. The power enve-

lop of attack shown in the right part of Figure 7 is mod-

eled by another Gaussian mixture model in frequency 

domain with the correlation with the harmonic part. 

The attack model in time axes was represented by the 

following equation.  

  
       

      

       
           

        
 

                      (5) 

Therefore in time direction, it is modeled as a Gaussian 

distribution which is correlated with the harmonic part. 

The attack model in frequency axes was represented by 

a Gaussian mixture model.  

                       
   

                         (6) 

         
   is a component Gaussian distribution cha-

racterized by means   , covariance   
  and weight of its 

component distributions   .  The parameters are updated 

by using EM algorithm in next section. 

Therefore the whole proposed model was composed by 

the harmonic model part and attack model part, which is 

shown in Figure 8.  The harmonic model part is same as 

Figure 2 while the attack model part is Gaussian mixture 

model in log-frequency direction.  

2.3 Updating Equations Using EM Algorithm 

The proposed method uses EM algorithm for the para-

meter estimation.  We assume that the energy density 



  

 

W(x;t) has an unknown fuzzy membership to the kth 

model, introduced as a spectral masking function 

       .  To minimize the difference between the ob-

served power spectrogram time series W(x;t) and the 

pitch model            , we use the Kullback–Leibler 

(KL) divergence as the global cost function;  

 ＝                  
             

         
 

  

      

under the constraint; 

                       ,                  (8) 

The problem is regarded as the minimization of (7).  

The membership degree        (spectral masking 

function) of kth pitch model can be considered as the 

weight of the kth model in the whole spectrogram model.  

It is unknown at the beginning and need to be estimated.  

On the other hand, the spectrogram of the kth model is 

modeled by a function           , where   is also un-

known.  The proposed model is optimized by using EM 

algorithm, where the E-step updates         with   

fixed and the M-step updates   with         fixed.  

The kth model is composed of fundamental partial and 

harmonic partials.  We use another masking function 

             that decomposes the kth partitioned cluster 

              into the {n,y}th subcluster.  Therefore 

            can be considered to be the weight of each 

Gaussian distribution of the kth model.  We apply the 

Jensen’s inequality for the cost function and derive the 

following function:  
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The equality holds when 

            
             

                 

                                     

satisfying the following conditions:  

                       

                      . 

The E-step is realized by the following equation. 

                   
             

                   

              

The M-step can be realized by the iteration of the up-

date the parameters depending on each acoustic object  
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Since each step of this update rule can reduce the ob-

jective function (9) successfully, the iteration of these up-

date steps can yield to locally optimal parameters.  

2.4 Harmonic Temporal Timbre Features 

In polyphonic music, different signals are very often 

overlapped so that the analysis and identification of each 

signal or each pitch are difficult.  For solving this prob-

lem, we need to retrieve as much information from each 

signal or pitch as possible to find the specific instruments’ 

patterns and identify them.  The characteristic of instru-

ments’ spectral energy of each harmonic partial can be 

used for identifying specific instrument.  There are many 

differences between the shapes in the spectrum of the 

harmonic partials, the temporal structure and the envelop 

similarity of the harmonics.  Therefore we consider that 

the characteristic in timbre of specific instrument is de-

rived from the difference of harmonic temporal timbre 

energy and harmonic temporal timbre envelope shape.  

The shapes of acoustic events classified into the same 

timbre category or same instrument should look alike re-

gardless of the pitch, power, onset timing and duration.  

Besides the spectral envelope features such as    and 

temporal features such as         and       , we define 

the Harmonic Temporal Timbre Energy Ratio (HTTER) 

and Harmonic Temporal Timbre Envelop Similarity 



  

 

(HTTES). HTTER defines the features of the energy ratio 

of the harmonic temporal timbres.   HTTES defines the 

difference between the envelop shapes of the harmonic 

temporal timbres. 

             
               

                
                                              

                        
       

        
   

              
        

       
               

 

3. EXPERIMENTS 

To evaluate the proposed algorithm, we did the expe-

riments with the music notes chosen from the RWC mu-

sic database [11].  Since the RWC database also includes 

the MIDI files associated with each real-performed music 

signal data, we will evaluate the accuracy by comparing 

the estimated fundamental frequency and the MIDI files. 

The accuracy for instrument identification experiment is 

the multiplication of the accuracy for F0 estimation and 

the accuracy for identifying each pitch to corresponding 

instrument. 

Using the corresponding MIDI data as references, the 

accuracy for instrument identification is computed by  

         
       

 
                    

where 

X is number of the total frames of the voiced part;  

D is number of deletion errors; 

I is number of insertion errors; 

S is number of substitution errors.      

                       is the accuracy for identifying 

each pitch to corresponding instrument by comparing 

with the corresponding MIDI data.  The right part of 

Figure 9 showed the result of applying proposed algo-

rithm for RM-J012 in RWC database [11].  In the esti-

mated F0 the piano pitch is represented by blue lines 

while the flute pitch is represented by red lines.  It was 

compared with the MIDI data in the left part of Figure 9 

for calculating the accuracy.  In MIDI figure, the piano 

part is represented by blue lines while the flute part is 

represented by yellow lines.   

271 music signal pieces (including 6 instruments: 32 

altosax pieces, 36 guitar pieces, 88 piano pieces, 45 violin 

pieces, 36 flute pieces and 34 oboe pieces) chosen from 

the RWC music database [11].  70% of the signal pieces 

were selected randomly as the training data. Then the 

proposed model was applied to generate the training  

 

Figure 9. Corresponding MIDI file and the Estimated 

F0 for RM-J002 from RWC database 

 

 2 instruments

（%） 

3 instruments

（%） 

4  instruments

（%） 

NMF 58.4 52.7 41.5 

Proposed 74.8 60 50.7 

Table 2. Recognition accuracy of NMF algorithm and the 

proposed algorithm 

 

features. SVM classifier was generated from the training 

features.  The testing data was selected randomly from 

the rest 30% music pieces and mixed randomly to gener-

ate new polyphonic signals.  

In Table 2, the proposed algorithm was compared with 

the NMF algorithm which is widely used by researchers 

for multipitch estimation and instrument identification. 

[12] [13] First, the F0 is estimated by using NMF pitch 

transcription algorithm. Therefore, each pitch was identi-

fied to specific instrument by using SVM classifier to 

classify the pattern of each estimated pitch. At last, the 

accuracy was calculated by comparing the estimated pitch 

and instrument category and the corresponding MIDI data. 

The proposed algorithm preponderate over the NMF ap-

proach for 16.4% for 2 instruments task, 7.3 % for 3 in-

struments task and 9.2% for 4 instruments task. 

Recognition accuracy of instrument identification by 

using 12 dimension MFCC features and proposed fea-

tures is shown in Table 3.  It shows the accuracy of iden-

tifying the correct instrument for each corresponding 

pitch from the polyphonic test signals which contain 2 

instruments (for example guitar and piano), 3 instruments 

and 4 instruments respectively. The proposed algorithm 

preponderate over the MFCC features for 6.8% for 2 in-

struments task, 7.4% for 3 instruments task and 6.4% for 

4 instruments task. 

 

4. CONCLUSION 

The motivation of this research is to develop an algo-

rithm for musical instrument identification without given 

preconditions such as correct F0s.  The proposed algo-

rithm models each spectral envelope of underlying har-

monic structure to approximate the real music as close as 



  

 

  2 instruments signals（%） 3  instruments signals（%） 4  instruments signals（%） 

  MFCC Proposed MFCC Proposed MFCC Proposed 

altosax 73.6 77.2 46.8 52.9 40.5 47.1 

guitar 68.5 73.8 51.4 58.7 38.7 46.8 

piano 79.1 86.7 66.5 73.3 54.3 63.6 

violin 66.7 76.5 60.2 67 48.5 53 

flute 56.8 69.5 47.1 56.8 45 51.4 

oboe 57 65.2 43.7 51.3 38.9 42.2 

Total  

 accuracy 
67 74.8 52.6 60 44.3 50.7 

Table 3. Recognition accuracy of instrument identification by using MFCC and proposed features 

 

possible and uses the EM algorithm to estimate the para-

meters.  New features such as Harmonic Temporal Tim-

bre Energy Ratio (HTTER) and Harmonic Temporal 

Timbre Envelop Similarity (HTTES) are proposed to 

generate classifier for instrument identification.  The pro-

posed algorithm was intuitive and efficient for solving the 

musical instrument identification problem, which was 

proved by the experiments.  
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