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Abstract
This paper proposes a statistical model of speech fundamen-
tal frequency (F0) contours, based on the formulation of the
discrete-time stochastic process version of the Fujisaki model,
which is known as a well-founded mathematical model repre-
senting the control mechanism of vocal fold vibration. There
are two important motivations for this statistical formulation.
One is to derive a general parameter estimation framework for
the Fujisaki model, allowing for the introduction of powerful
statistical methods, and the other is to introduce a measure of
speech naturalness in terms of an F0 contour through a prob-
ability distribution assumption, that can be incorporated into
many statistical speech processing problems such as speech
analysis, synthesis, separation, denoising and dereverberation.
Index Terms: speech F0 contour, statistical model

1. Introduction
The fundamental frequency (F0) contour in normal speech con-
tains various types of information including emotional and other
non-linguistic information such as the speaker’s identity, mood
and level of attention, and plays as important a role in our daily
speech communication as formants, through which we encode
a phonemic sequence to convey linguistic information to the
listener(s). An F0 contour is a realization of the vocal fold os-
cillation with slowly varying frequencies, whose dynamics are
governed by a combination of different factors, in particular the
length and elasticity of vocal folds, laryngeal muscle tension,
and subglottal air pressure. All possible F0 contours produced
by a particular speech apparatus should thus be characterized
and constrained by the presumably small number of parame-
ters governing the control mechanism of vocal fold vibration.
Therefore, how well the F0 contour of a certain sound matches
the mechanical constraint is an important factor that determines
how likely it is that the sound originates from a speech utter-
ance. Accordingly, modeling the dynamics of the F0 contour of
speech can be potentially very beneficial for any speech appli-
cations that could be improved by taking account of the natural-
ness in terms of the F0 contour.

The Fujisaki model [1–3] is a well-founded mathemati-
cal model consisting of a set of physiologically and physically
meaningful parameters, which describes the process of gen-
erating F0 contours by vocal folds in a reasonably simplified
form. This model is known to approximate actual F0 contours
of speech surprisingly well when the model parameters are cho-
sen appropriately, and its validity has been shown for many, ty-
pologically diverse languages. For this reason, and thanks to the
intuitive association of the model parameters with the mechan-
ical factors in the control mechanism of phonation, the Fujisaki
model has been widely used with notable success to design F0

contours for synthesizing natural speech. On the other hand,
several techniques have been proposed for solving the inverse
problem of estimating the Fujisaki model parameters from raw
F0 contour observations [3–5], for the purpose of incorporating
the extracted parameters in automatic speech/emotion recogni-
tion systems in some way to improve their performance, but so
far with limited success due to the analytical complexity of the
Fujisaki model.

In this paper, we formulate a discrete-time stochastic pro-
cess version of the Fujisaki model. Our motivation behind this
statistical formulation is twofold. Firstly, by making the best
use of statistical techniques, we expect to be able to derive a
powerful framework for the estimation of the Fujisaki model
parameters, which has conventionally been considered a diffi-
cult task. Secondly, it should enable us to represent the notion
of speech naturalness in terms of the F0 contour through a prob-
ability distribution assumption. This will allow us to smoothly
incorporate our probabilistic model as an additional speech nat-
uralness measure into many statistical speech processing prob-
lems such as speech separation, denoising and dereverberation.

2. Original Fujisaki model
The Fujisaki model [1–3], shown in Fig. 1, assumes that an F0

contour on a logarithmic scale, y(t), where t is time, is the su-
perposition of two contributions associated with mutually inde-
pendent types of movement of the thyroid cartilage with differ-
ent degrees of freedom and muscular reaction times, referred
to as the phrase component, yp(t), and the accent component,
ya(t), respectively [2]. The phrase component consists of the
major-scale pitch variations over the duration of the prosodic
units, which are characterized by a fast rise followed by a slower
fall. The accent component consists of the smaller-scale pitch
variations in accented syllables. These two components are
modeled as the outputs of second-order critically-damped fil-
ters, one being excited with Dirac deltas (phrase commands),
and the other with rectangular pulses (accent commands). The
linear systems producing yp(t) and ya(t), namely phrase con-
trol and accent control mechanisms, are characterized by

Gp(t) =

(

α2te−αt (t ≥ 0)

0 (t < 0)
, (1)

Sa(t) =

(

1 − (1 + βt)e−βt (t ≥ 0)

0 (t < 0)
, (2)

where Gp(t) is the impulse response of the phrase control
mechanism and Sa(t) is the step response of the accent control
mechanism. α and β are natural angular frequencies of the two
second-order systems, which are known to be almost constant
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Figure 1: Block diagram of Fujisaki model

within an utterance as well as across utterances for a particular
speaker. Although certain differences exist across speakers, it
has been shown that α=3rad/s and β =20rad/s can be used as
default values. The two components yp(t) and ya(t) are further
added by a constant value yb related to the lower bound for the
speaker’s F0, below which no regular vocal fold vibration can
be maintained. The log F0 contour, y(t), is thus expressed as

y(t) = yb +
X

i

Ap,iGp(t − T0,i)

+
X

j

Aa,j

˘

Sa(t − T1,j) − Sa(t − T2,j)
¯

, (3)

where T0,i and Ap,i denote the onset time and amplitude of the
i-th phrase command, and T1,j , T2,j and Aa,j denote the onset
time, offset time and amplitude of the j-th accent command.

Although the two functions Gp(t) and Sa(t) look different,
it should be made clear that the impulse response of the accent
control mechanism, Ga(t), has the same form as the phrase con-
trol mechanism, Gp(t), namely

Ga(t) =

(

β2te−βt (t ≥ 0)

0 (t < 0)
, (4)

since Ga(t) is defined by the time differentiation of the step
response Sa(t). The accent component can thus be seen as the
convolution of Ga(t) and a command function composed of a
set of stepwise functions.

3. Discretized Fujisaki model
In this section, we apply a backward difference s-to-z trans-
form to the phrase and accent control mechanisms described
as continuous-time linear systems in order to obtain a discrete-
time version of the Fujisaki model. The reason for the dis-
cretization will be made apparent later. The transfer function
(Laplace transform) of the impulse response of the phrase con-
trol mechanism is given in the s-domain as

Gp(s) = L
ˆ

Gp(t)
˜

=
α2

(s + α)2
. (5)

The backward difference transform approximates the time dif-
ferential operator s by the backward difference operator in the
z-domain such that

s ≃ 1 − z−1

t0
, (6)

where t0 is the sampling period of the discrete-time representa-
tion. By undertaking this transform, the transfer function of the
inverse system G−1

p (s) can be written in the z-domain as

H−1
p (z) = a2z

−2 + a1z
−1 + a0, (7)

where

a2 = (ψ − 1)2, (8)
a1 = −2ψ(ψ − 1), (9)

a0 = ψ2, (10)

and ψ = 1+1/(αt0). Here we use up[k] to denote the discrete-
time version of the phrase command function where k indicates
the discrete-time index. The discrete-time version of the phrase
component, yp[k], can thus be regarded as the output of a con-
strained all-pole system whose characteristics are governed by
a single parameter ψ (or α), such that

up[k] = a0yp[k] + a1yp[k − 1] + a2yp[k − 2]. (11)

In the same way, the relationship between the accent command
function ua[k] and the accent component ya[k] is described as

ua[k] = b0ya[k] + b1ya[k − 1] + b2ya[k − 2], (12)

b2 = (φ − 1)2, (13)
b1 = −2φ(φ − 1), (14)

b0 = φ2, (15)

where φ = 1 + 1/(βt0). For the baseline F0, we use yb[k]
to denote the discrete-time version of yb(t). Altogether, the
discrete-time version of the Fujisaki model can be expressed as
the superposition of the three components:

y[k] = yp[k] + ya[k] + yb[k]. (16)

4. Statistical formulation
4.1. Modeling phrase and accent command pair with HMM

We describe here how to model the command functions up[k]
and ua[k]. To explain the phrase and accend commands in a
physiologically and linguistically meaningful way, it is impor-
tant that they satisfy the following requirements:

1. Phrase commands are a set of impulses and accent com-
mands are a set of step-wise functions.

2. A phrase command occurs at the start of an utterance or
after the offset of an accent command in the preceding
phrase, and is followed by the onset of the next accent
command. This means that a phrase command will not
occur while an accent command is being activated.

3. The onset of an accent command is followed by its offset.
This means that neighboring accent commands will not
overlap each other.

According to assumption 2, up[k] and ua[k] are reciprocally
constrained and so they should not simply be modeled sepa-
rately. One challenge in the estimation of the Fujisaki model
parameters has been how to deal with the optimization prob-
lem under these constraints. As a convenient way of incorpo-
rating these assumptions into the command functions, we pro-
pose modeling the up[k] and ua[k] pair using a hidden Markov
model (HMM). The use of an HMM for modeling the com-
mand functions is our primary reason for considering modeling
the discrete-time version of the Fujisaki model.

Let us arrange up[k] and ua[k] into a vector o[k]. We as-
sume that o[k] is a random vector driven by an additive white
Gaussian noise (ϵp[k], ϵa[k])T such that

o[k] :=

"

up[k]

ua[k]

#

=

"

µp[k]

µa[k]

#

+

"

ϵp[k]

ϵa[k]

#

. (17)



Let ϵp[k] ∼ N (0, σ2
p) and ϵa[k] ∼ N (0, σ2

a) be mutually inde-
pendent, then

o[k] ∼ N ([k],Υ) (18)

[k] :=

"

µp[k]

µa[k]

#

, Υ :=

"

σ2
p 0

0 σ2
a

#

. (19)

Equation (18) can be viewed as an HMM in which the output
distribution of each state is a Gaussian distribution. The mean
vector [k] is thus considered to evolve in time as a result of the
state transition. This way of thinking allows us to incorporate
assumptions 1–3 into µp[k] and µa[k] by simply constraining
the path of the state transitions, as illustrated in Fig. 2.

The present HMM consists of N +3 distinct states, p0, p1

and a0, · · · , aN . In state p0, µp[k] and µa[k] are both con-
strained to be zero. Given that the model is in state p0, it is only
allowed either to stay in that state or to move to state p1. In
state p1, µp[k] can take a non-zero value as a function of time,
Ap[k], whereas µa[k] is still restricted to zero. It is important to
note that in state p1, no self-transitions are allowed and only the
transition to state a0 is possible. In state a0, µp[k] and µa[k] are
again both assumed to be zero. Hence, this specific path con-
straint restricts µp[k] to consisting of isolated deltas. State a0

leads to states a1, · · · , aN , in each of which µa[k] can take a
different non-zero value A

(n)
a assumed to be constant in time,

whereas µp[k] is forced to be zero. Direct state transitions from
state an to state an′ (n ̸= n′, 1 ≤ n ≤ N , 1 ≤ n′ ≤ N ) with-
out passing through state a0 are not allowed. This constraint
restricts µa[k] to consisting of rectangular pulses. It should also
be noted that the present HMM ensures that no more than one
command will be active at each point in time. To sum up, the
proposed HMM is defined as follows:

Output sequence: {o[k]}K
k=1

Set of states: S := {p0, p1, a0, · · · , aN}
State sequence: {sk}K

k=1

Output distribution: P (o[k]|sk = i) = N (ci[k],Υ)

ci[k]=

8

>

>

>

<

>

>

>

:

`

0, 0
´T

(i=p0)
`

Ap[k], 0
´T

(i=p1)
`

0, 0
´T

(i=a0)
`

0, A
(n)
a

´T
(i=an)

Transition probability: ϕi′,i := log P (sk = i|sk−1 = i′)

For simplicity, we treat the transition probabilities ϕi′,i as
constant parameters in this paper, so that the free parameters to
be determined in our command function model consist of the
magnitude of the phrase command, Ap[k], the state sequence,
sk, the magnitude of the accent command, {A(n)

a }N
n=1, and the

variance of the output distribution, σ2
p, σ2

a . Hereafter we use θu

to denote all these parameters:

θu :=
˘

{Ap[k], s[k]}K
k=1, {A(n)

a }N
n=1, σ

2
p, σ2

a

¯

. (20)

Once the state sequence {sk}K
k=1 is specified, the mean se-

quences, {µp[k]}K
k=1 and {µa[k]}K

k=1, namely the phrase and
accent command functions, are determined simultaneously by

"

µp[k]

µa[k]

#

= csk [k]. (21)

p0

p1 a0

a3

a1

a2

Profile of

p0 p1 a0 a1 a0 a2 p0 p1 a0 state

Figure 2: Command function modeling with HMM.

4.2. Likelihood function and prior probabilities

In this subsection, we derive the probability density function of
the F0 contour, y[1], · · · , y[K], based on the statistical model-
ing of the command functions presented in the previous subsec-
tion. From Eqs. (18) and (19),

up[k]|θu ∼ N (µp[k], σ2
p), (22)

ua[k]|θu ∼ N (µa[k], σ2
a). (23)

Since up[k] and ua[k] are both assumed to be driven by white
noise, it can be written in vector notation as

up|θu ∼ N (—p,Σp), Σp = σ2
pI, (24)

ua|θu ∼ N (—a,Σa), Σa = σ2
aI, (25)

where up:=(up[1], · · · , up[K])T, ua:=(ua[1], · · · , ua[K])T,
—p :=(µp[1], · · · , µp[K])T, —a :=(µa[1], · · · , µa[K])T. By
using the linear equation given in Section 3, the phrase com-
ponent yp :=(yp[1], · · · , yp[K])T and the accent component
ya :=(ya[1], · · · , ya[K])T can be written in terms of up and
ua, respectively, such that

up = Ayp, (26)

ua = Bya, (27)

where

A :=

2

6

6

6

6

6

4

a0 O
a1 a0

a2 a1 a0

. . .
. . .

. . .
O a2 a1 a0

3

7

7

7

7

7

5

, B :=

2

6

6

6

6

6

4

b0 O
b1 b0

b2 b1 a0

. . .
. . .

. . .
O b2 b1 b0

3

7

7

7

7

7

5

. (28)

Hence, it follows from Eqs. (24) and (25) that

yp|θu, α ∼ N
`

A−1—p, A−1Σp(A−1)T
´

, (29)

ya|θu, β ∼ N
`

B−1—a, B−1Σa(B−1)T
´

. (30)

As for the base component yb[k], we assume that it is
also a random variable driven by additive white Gaussian noise
ϵb[k] ∼ N (0, σ2

b) such that

yb[k] = µb + ϵb[k], (31)

and hence

yb|µb ∼ N (µb1,Σb), Σb = σ2
bI. (32)



We use θb := {µb, σ2
b} to denote the parameters related to the

base component. Let ϵξ[j] and ϵξ′ [j
′] be mutually independent

when (ξ, j) ̸= (ξ′, j′), then yp, ya and yb are assumed to be
statistically independent. Care must be taken that this does not
mean that —p and —a are independent. It therefore follows from
Eqs. (29), (30) and (32) that their sum y = yp + ya + yb will
also be normally distributed such that

y|Θ ∼ N
`

A−1—p + B−1—a + µb1,

A−1Σp(A−1)T + B−1Σa(B−1)T + Σb

´

, (33)

where Θ := {θu, ψ, φ, θb}. Overall, the likelihood function of
the Fujisaki model parameters Θ given y can be written as

P (y|Θ) =
|Σ−1|1/2

(2π)K/2
exp

ȷ

−1

2
(y − —)TΣ−1(y − —)

ff

,

— = A−1—p + B−1—a + µb1, (34)

Σ = A−1Σp

`

AT´−1
+ B−1Σa

`

BT´−1
+ Σb.

As for the prior probability of Θ, we assume that the param-
eters are independent of each other, the parameters other than
the state sequence, {s[k]}K

k=1, phrase control parameter, ψ, and
the accent control parameter, φ, are uniformly distributed, and
{s[k]}K

k=1 is a first-order Markov chain:

P (Θ) ∝ P (ψ)P (φ)P (s1)
K

Y

k=2

P (sk|sk−1). (35)

5. Practical problem setting
In this section, we present some practical problems into which
the proposed statistical F0 contour model can be incorporated.

5.1. Parameter estimation from a raw F0 contour

The first problem involves estimating the Fujisaki model pa-
rameters from a raw F0 contour. Here the raw F0 contour refers
to F0 data assumed to have been extracted using some F0 de-
tection method from a speech signal of interest. Looking back
at Eq. (34), it can be seen that we have thus far implicitly as-
sumed that we are given a set of F0 observations on the whole
sample period. However, F0s should only exist in the voiced
region, which means that generally the observable data should
be “incomplete” in the sense that the F0 data in the unvoiced
regions are missing. Hence, when talking about the estimation
of the Fujisaki model parameters from a raw F0 contour, it is
generally necessary to deal with such incomplete data. In a sta-
tistical framework, this can simply be viewed as a missing data
imputation problem, which can be effectively dealt with using
the Expectation-Maximization (EM) algorithm [7].

Let us define y ∈ RK as the “complete” data, which con-
sist of the observed raw F0 data and the missing data. If we
could estimate which region was the missing region in advance,
for example by using a voicing determination algorithm such
as the one incorporated in YIN [8], the relationship between
the observed raw F0 data, yobs ∈ RK′

such that K′ ≤ K,
and the complete data, y ∈ RK , could be written explicitly as
yobs = My, where M is a K′-by-K binary matrix that has
exactly one entry 1 in each row and 0’s elsewhere. Owing to
space limitations, we omit all the mathematical details and only
provide the procedure needed in practice: in the expectation
step, the complete data y (strictly speaking, the expectation of

the complete data) are updated according to

y ← — + ΣMT(MΣMT)−1(yobs − M—), (36)

and in the maximization step, the model parameters are updated
using the data hypothetically completed in the expectation step

Θ ← argmax
Θ

log P (y|Θ)P (Θ), (37)

where P (y|Θ) and P (Θ) are defined as Eqs. (34) and (35),
respectively. Though trivial, when M = I for example, which
means there is no missing region, Eq. (36) becomes y ← yobs,
implying that we can treat the raw F0 data as is as the complete
data.

5.2. Proposed model as an F0 contour prior

Given some statistical model of speech features (e.g., wave-
form, spectrum or others) which takes F0 values as free param-
eters, let us consider the problem of estimating the unknown
parameters of the given model by incorporating the present sta-
tistical F0 contour model as a prior distribution over the F0 pa-
rameters. In this case the Fujisaki model parameters play the
role of hyperparameters in the entire system under analysis.

Suppose that we are given a sequence of observed speech
features on the whole sample period, D = {dk}K

k=1, which
is assumed to be generated according to a statistical model
P (D|y, Ξ), where y denotes the F0 parameters and Ξ con-
tains all other parameters independent of y. By incorporating
Eq. (34) as a prior distribution over y, and assuming D is not
directly dependent on the hyperparameter Θ, the Maximum A
Posteriori (MAP) estimation problem can be formalized as

{ŷ, Θ̂, Ξ̂} = argmax
y,Θ,Ξ

log P (D|y, Ξ)P (y|Θ)P (Θ)P (Ξ).

Although it may depend on how P (D|y, Ξ) is defined, in many
cases we need to employ an iterative method in which each iter-
ation comprises the following conditional maximization steps:

Ξ ← argmax
Ξ

log P (D|y, Ξ)P (Ξ), (38)

y ← argmax
y

log P (D|y, Ξ)P (y|Θ), (39)

Θ ← argmax
Θ

log P (y|Θ)P (Θ). (40)

Equation (39) updates the F0 contour estimate such that the sta-
tistical speech model best explains the observed speech features
under the prior distribution defined by the Fujisaki model pa-
rameters obtained at the previous iteration. Eq. (40) then up-
dates the Fujisaki model parameters such that the present sta-
tistical F0 contour model best explains the updated F0 contour
estimate y.

6. Parameter optimization process
We can notice that the algorithms in either of the two examples
shown in the previous section consist of performing the same
optimization step, that is, Eqs. (37) and (40). Here we describe
an iterative algorithm, which locally maximizes the posterior
density of Θ given y, P (Θ|y) ∝ P (y|Θ)P (Θ). By regard-
ing a set consisting of the phrase, accent and base components,
x := (yT

p , yT
a , yT

b )T, as the complete data, this problem can be
viewed as an incomplete data problem, which can be dealt with



again using the EM algorithm. In this case, the log-likelihood
of Θ given the complete data is given as

log P (x|Θ)
c
=

1

2
log |Λ−1| − 1

2
(x − m)TΛ−1(x − m),

x :=

2

6

4

yp

ya

yb

3

7

5

, m :=

2

6

4

A−1—p

B−1—a

µb1

3

7

5

, (41)

Λ−1 :=

2

6

4

ATΣ−1
p A O O

O BTΣ−1
a B O

O O Σ−1
b

3

7

5

.

Taking the conditional expectation of Eq. (41) with respect to x
given y and Θ = Θ′, and then adding log P (Θ) to both sides,
we obtain the Q function

Q(Θ, Θ′)
c
=

1

2

h

log |Λ−1| − tr(Λ−1E[xxT|y; Θ′])

+ 2mTΛ−1E[x|y; Θ′] − mTΛ−1m
i

+ log P (Θ). (42)

Because the relationship between the incomplete data and the
complete data can be written as y = Hx where H :=
[I, I, I], E[x|y; Θ] and E[xxT|y; Θ] are given explicitly as

E[x|y; Θ] = m + ΛHT(HΛHT)−1(y − Hm), (43)

E[xxT|y; Θ] = Λ − ΛHT(HΛHT)−1HΛ

+ E[x|y; Θ]E[x|y; Θ]T. (44)

The expectation step computes E[x|y; Θ′] and E[xxT|y; Θ′]
according to Eqs. (43) and (44) by substituting the current pa-
rameter estimate into Θ′.

Now if we let E[x|y; Θ′] be partitioned into three K × 1
blocks and E[xxT|y; Θ′] into nine K × K blocks such that

E[x|y; Θ′]=

2

6

4

x̄p

x̄a

x̄b

3

7

5

, E[xxT|y; Θ′]=

2

6

4

Rp ∗ ∗
∗ Ra ∗
∗ ∗ Rb

3

7

5

, (45)

where ∗ stands for blocks that we can ignore hereafter, then the
Q function can be rewritten in a more convenient form:

Q(Θ, Θ′)
c
=

1

2

h

log |ATΣ−1
p A| + log |BTΣ−1

a B| + log |Σ−1
b |

− tr(ATΣ−1
p ARp) + 2—T

p Σ−1
p Ax̄p

− tr(BTΣ−1
a BRa) + 2—T

a Σ−1
a Bx̄a

− tr(Σ−1
b Rb) + 2—T

b Σ−1
b x̄b

− —T
p Σ−1

p —p − —T
a Σ−1

a —a − —T
b Σ−1

b —b

i

+ log P (Θ). (46)

The update formula for each parameter in the maximization step
can be derived using Eq. (46).

1) State sequence s1, · · · , sK : Leaving only the terms in
Q(Θ, Θ′) that depend on s := {sk}K

k=1, we have

I1(s) := − 1

2

K
X

k=1

(o[k] − csk [k])TΥ−1(o[k] − csk [k])

+ log P (s1) +

K
X

k=2

log P (sk|sk−1), (47)

where o[k] := ([Ax̄p]k, [Bx̄a]k)T. Here the notation [·]k is
used to denote the k-th element of a vector. The state sequence
{sk}K

k=1 maximizing I1(s) can be solved efficiently using the
Viterbi algorithm as follows. We first set δ1(i) at

δ1(i) = −1

2
(o[1] − ci[1])TΥ−1(o[1] − ci[1]). (48)

for all the hidden states i. We can then compute δk(i) for k =
2, · · · , K recursively via

δk(i) = max
i′

»

δk−1(i
′) − 1

2
(o[k] − ci[k])T

Υ−1(o[k] − ci[k]) + ϕi′,i

–

. (49)

The most likely transition for each state should be registered
at each recursion Ψk(i) = argmaxi′ [δk−1(i

′) + ϕi′,i], so that
the most likely state sequence can be traced at the end of the
recursion with sk−1 = Ψk(sk) (k = K, · · · , 2), where sK =
argmaxi δK(i). Substituting the updated state sequence {sk}
into Eq. (21), we finally obtain the updated —p and —a.

2) Magnitude of phrase command Ap[k]: Q(Θ, Θ) is maxi-
mized with respect to Ap[k] when

Ap[k] = [Ax̄p]k (k ∈ Tp1), Tp1 = {k|sk = p1}. (50)

3) Magnitude of accent command A
(n)
a : Q(Θ, Θ′) is maxi-

mized with respect to A
(n)
a when

A(n)
a =

1

|Tan |
X

k∈Tan

[Bx̄a]k, Tan = {k|sk = an}. (51)

4) Phrase control parameter ψ: Let us assume a Gaussian
prior distribution over ψ such that

ψ ∼ N (µψ, 1/ν2
ψ). (52)

Leaving only the terms in Q(Θ, Θ′) that depend on ψ, we have

I2(ψ) = log |A| − 1

2
tr

`

ATΣ−1
p ARp

´

+ —T
p Σ−1

p Ax̄p − 1

2
ν2

ψ(ψ − µψ)2. (53)

Now, let

U2 :=

2

6

6

6

6

4

1 O
−2 1
1 −2 1

. . .
. . .

. . .
O 1 −2 1

3

7

7

7

7

5

, U1 :=

2

6

6

6

6

4

0 O
2 0
−2 2 0

. . .
. . .

. . .
O −2 2 0

3

7

7

7

7

5

,

U0 :=

2

6

6

6

6

4

0 O
0 0
1 0 0

. . .
. . .

. . .
O 1 0 0

3

7

7

7

7

5

, (54)

then from Eqs. (8)–(10), A can be written as

A = U2ψ
2 + U1ψ + U0. (55)



The partial derivative of I2(ψ) (or Q(Θ, Θ′) itself) with respect
to ψ is a quartic function, equal up to a constant factor to

2tr(UT
2 U2Rp)ψ4 + 3tr(UT

2 U1Rp)ψ3

+ {tr((2UT
2 U0 + UT

1 U1)Rp) − 2—T
p U2x̄p + σ2

pν2
ψ}ψ2

+ {tr(UT
1 U0Rp) − —T

p U1x̄p − 2σ2
pν2

ψµψ}ψ − 2Kσ2
p,

and its roots, namely the stationary points of Q(Θ, Θ′), can be
solved algebraically, from which we can find the optimal ψ.

5) Accent control parameter φ: Let us again assume a Gaus-
sian prior distribution over φ such that φ ∼ N (µφ, 1/ν2

φ). As
the derivation follows in exactly the same manner as above, we
shall omit it.

6) Mean of base component µb: Q(Θ, Θ′) is maximized with
respect to µb when µb = 1Tx̄b/K.

7) Variances of additive noises σ2
p, σ2

a and σ2
b: Q(Θ, Θ′) is

maximized with respect to σ2
p, σ2

a and σ2
b when

σ2
p =

`

tr
`

ATARp

´

− 2—T
p Ax̄p + —T

p —p

´

/K, (56)

σ2
a =

`

tr
`

BTBRa

´

− 2—T
a Bx̄a + —T

a —a

´

/K, (57)

σ2
b =

`

tr(Rb) − 2µb1
Tx̄b

´

/K + µ2
b. (58)

7. Experiment
Before applying our model to practical problems such as those
introduced in Section 5, we focus solely on testing the behav-
ior of the optimization algorithm presented in Section 6. This
is important because the devised algorithm is simply a local
search algorithm, which is not guaranteed to solve the global
optimum, and how seriously the local optima can affect the re-
sult of the parameter estimation is not yet understood. For this
reason, we only present the result of a numerical analysis that
we ran on artificial F0 contour data created using the original
(continuous-time) Fujisaki model. There are two points that we
want to investigate using this experiment. One is the possibility
of avoiding undesirable solutions that may be caused by local
optima. The other is the influence of the approximation errors
originating from the discretization.

The test data, depicted in Fig. 3, were created with the fol-
lowing settings. We set the total duration at 10s, the sampling
period at 10ms, α = 3, β = 20, yb = 4, T0,1 = 1, T0,2 = 3,
T0,3 = 4.5, T0,4 = 6.5, Ap,1 = 0.7, Ap,2 = 0.6, Ap,3 = 0.3,
Ap,4 = 0.4, T1,1 = 1.5, T2,1 = 1.8, Aa,1 = 0.5, T1,2 = 2.1,
T2,2=2.5, Aa,2=0.4, T1,3=3.4, T2,3=3.8, Aa,3=0.6, T1,4=5.0,
T2,4=5.5, Aa,4=0.3, T1,5=6.8, T2,5=7.2, Aa,5=0.6, T1,6=7.5,
T2,6=7.9, and Aa,6=0.3. The conditions for the present algo-
rithm were as follows. The iteration was run for 10 iterations.
N was set at 10, so that the total number of hidden states was
13. The state transition probabilities were set respectively at
ϕp0,p0 =log(0.999), ϕp0,p1 =log(0.001), ϕp1,a0 =log(1.0),
ϕa0,a0=log(0.999), ϕan,a0=log(0.001), ϕa0,an=log(0.0001),
ϕan,an=log(0.899), ϕan,p0=log(0.1), with 1≤n≤10.

The parameter estimates of —, —p and —a obtained using
the present algorithm are shown in Fig. 4. By comparing Fig. 4
with Fig. 3, one can confirm that the parameter estimates are
extremely close to the correct values. Similar results were ob-
tained when using initial parameters that were randomized dif-
ferently. This fact indicates that we can solve the optimization
problem given by Eq. (37) or Eq. (40) quite satisfactorily with
the present algorithm, which strongly motivates us to deal with
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Figure 3: Test data: F0 contour in solid line and phrase component in dotted
line (top), phrase commands (middle), and accent commands (bottom).
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Figure 4: Parameter estimates: µ in solid line and A−1µp+µb in dotted line
(top), µp (middle), and µa (bottom).

the practical problems introduced in Section 5. Another impor-
tant conclusion drawn from the results was that the approxima-
tion error due to the discretization did not appear to be a crucial
matter.

8. Conclusion
This paper proposed a statistical model of speech F0 contours,
based on the formulation of a discrete-time stochastic process
version of the Fujisaki model. Some examples of practical prob-
lems into which the proposed model could be incorporated were
mentioned. A parameter estimation framework for the proposed
model based on the EM approach was derived, and the behavior
of the devised algorithm was tested on artificially created data.
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