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Abstract

This paper addresses the problem of separating concur-
rent speech through a spatial filtering stage and a subse-
quent time-frequency masking stage. These stages com-
plement each other by first exploiting the spatial diver-
sity and then making use of the fact that different speech
signals rarely occupy the same frequency bins at a time.
The novelty of the paper consists in the use of auditory-
motivated log-sigmoid masks, whose scale parameters
are optimized to maximize the kurtosis of the separated
speech. Experiments on the Pascal Speech Separation
Challenge II show significant improvements compared to
previous approaches with binary masks.
Index Terms: speech recognition, microphone arrays,
time-frequency masking, kurtosis maximization

1. Introduction
Early sound capturing systems for hands-free speech
recognition [1, 2] aimed at acquiring a high-quality
speech signal from a single, distant speaker. These sys-
tems typically employed a spatial filter in order to extract
the signal originating from the direction of the speaker.
Noise and reverberation were suppressed, provided they
came from other directions. When the research focus
shifted towards meeting recognition [3], it turned out,
however, that overlapping speech is far more difficult
to handle. This motivated the combination of classical
beamforming techniques with blind source separation ap-
proaches such as time-frequency masking [4, 5] and mini-
mization of the mutual information (MMI) [6, 7]. The re-
sulting systems eventually lined up for competition at the
PASCAL Speech Separation Challenge II (SSC2) [5, 7].
In this work, we continue along the lines of these ap-
proaches. But we propose to replace the binary time-
frequency masks in [5, 7] by their sigmoid counterparts.
This is based on the rationale that (1) soft masks can more
accurately account for uncertainties [8] and (2) they in-
clude binary masks as a special case, with the scale pa-
rameter approaching infinity. The latter raises the ques-
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tion which choice of a scale parameter would give a good
separation performance. To answer this question, we
here avail ourselves of the work of Li and Lutman [9]
who have shown that the kurtosis (a) decreases in de-
pendency of the number of speakers as well as (b) that
it highly correlates with the speech recognition perfor-
mance. Consequently, we here use the kurtosis as a cri-
terion for optimizing the scale parameter. In addition to
this, we investigate the use of a linear constrained min-
imum variance (LCMV) beamformer, which separates
concurrent speech by putting a distortionless constraint
on the desired speaker and a zero constraint on the in-
terfering speaker. This gave significantly better results
than a superdirective beamformer [4], while being only
slightly inferior to the MMI beamformer [6].

The remaining part of the paper is organized as fol-
lows. In Section 2, we give an overview of the used
speech separation system. This is followed by a brief re-
view of the considered spatial filtering techniques in Sec-
tion 3 as well as postfiltering in Section 4. The proposed
log-sigmoid masking approach is explained in Section 5.
Experimental results on the speech separation challenge
[10] are finally reported in Section 6.

2. System Overview

Following the design, which prevailed in the source sep-
aration challenge [5, 7], we here use a system which con-
sists of three components: a spatial filtering stage, a post-
filtering stage and a time-frequency (T/F) masking stage.
These components are combined as shown in Figure 1.
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Figure 1: Block diagram of the speech separation system
used in this work.



The spatial filtering stage exploits the fact that speakers
tend to reside at different positions. This allows us to sep-
arate their speech by directing one beamformer at each
speaker (which in case of the speech separation challenge
necessitates two beamformers to be operated in parallel).
The beamformers we consider here are a delay-and-sum
beamformer, a superdirective beamformer [2, 11, 4, 5],
the MMI beamformer from [6, 7] as well as an interfer-
ence canceling LCMV (see Section 3.2). Following [7],
we use an additional postfiltering stage, which aims at
further reducing the noise. This is achieved under the
assumption of spatially uncorrelated noise at the sensor
pairs [12], which does not really hold1 in the presence of
a strong directed interference such as a second speaker.
For this reason, Maganti et al. [4, 5] proposed a spe-
cialized crosstalk cancellation postfilter. It makes use of
the W-disjoint orthogonality of speech [13], which states
that different speakers tend to excite different frequency
bands at a time. Consequently, Maganti et al. use a bi-
nary mask, which selects the stronger speaker in each
time-frequency unit (based on the relative power at the
beamformer outputs), and then sets the weaker speaker
to zero (in this unit). This is what essentially happens in
the T/F masking stage in Figure 1. Deviating from [4, 5],
we here however explore the use of soft masks that ac-
count for uncertainty of one speaker being stronger than
the other.

3. Spatial Filtering Stage
The aim of spatial filtering is to extract the signal coming
from the direction of the desired speaker while suppress-
ing noise and reverberation coming from other directions.
This is done based on the fact that sound sources intro-
duce time differences of arrival (TDOAs) in dependency
of their position in relation to the array. Considering an
array of L microphones with locations mi, i = 1, . . . , L,
the possibly easiest way to achieve spatial filtering is to
(1) calculate the TDOAs that would be expected for a
given source position and array geometry, (2) invert the
TDOAs in order to align the signals coming from the de-
sired position and then (3) sum the aligned signals in or-
der to extract the desired signal while attenuating other
sources (i.e. the non-aligned part) through destructive in-
terference. This approach is called delay-and-sum beam-
forming and it is described in more detail in the follow-
ing.

3.1. Delay-and-Sum Beamforming

Let us consider a plane wave approaching the array aper-
ture from direction

a =
[
cos θ sinφ sin θ sinφ cosφ

]T
(1)

1We would like to emphasize that, though suboptimal, postfiltering
led to a significant reduction of the word error rate in practice (see Sec-
tion 6).

with azimuth θ and elevation φ. Then, using the far field
assumption, the delay which is introduced at the i-th mi-
crophone in relation to the center of the array (i.e. 0)
is τi = −aTmi/c where c denotes the speed of sound.
Translating these delays to phase shifts in the frequency
domain leads to the so-called array manifold vector v:

v(ω) =
[
e−jωτ1 · · · e−jωτL

]T
(2)

where ω is the angular frequency. Now, denoting the fre-
quency spectrum of the signals xi(t), i = 1, . . . , L, at the
microphones by

X(ω) =
[
X1(ω) · · · XL(ω)

]T
,

the frequency spectrum S(ω) of sound coming from di-
rection a can be extracted as the scalar product of X(ω)
with the weight vector w(ω) , 1

N v(ω):

Y (ω) = wH(ω) ·X(ω) (3)
= wH(ω) · S(ω)v︸ ︷︷ ︸

S(ω)

+wH(ω) ·N(ω)

where S(ω) denotes the spectrum of the desired signal
and where N(ω) denotes the noise vector. In particular
note that the multiplication by wH(ω) is nothing else but
the frequency domain equivalent to inverting the delays
and summing. The noise remaining after spatial filtering
is wH(ω)N(ω). The dependency on ω will be dropped in
most of the following in order to improve the readability.

3.2. LCMV Beamforming

Delay-and-sum beamforming may be generalized to us-
ing arbitrary weight vectors w that are optimized accord-
ing to certain criteria. For the particular case of Lin-
ear Constraint Minimum Variance (LCMV) beamform-
ing, the optimization criterion consists of minimizing the
noise power at the output of the beamformer while at the
same time maintaining a set of linear constraints. The lat-
ter typically includes the distortionless constraint, which
ensures that the signal from the desired direction is nei-
ther attenuated nor amplified, i.e. wHv = 1. This leads
to the following optimization problem:

min
w

wHΣnnw subject to wHv = 1 (4)

where Σnn denotes the power spectral density (PSD) ma-
trix of the noise. Now, solving (4) with a Lagrange mul-
tiplier, we obtain the Minimum Variance Distortionless
Response (MVDR) beamformer whose weight vector is
given by:

wmvdr =
Σ−1
nnv

vHΣ−1
nnv

. (5)

The most problematic aspect is getting a reliable estimate
of the PSD matrix. But that can be avoided by making the



assumption of a homogeneous noise field, for which Σnn
can be written [11]: Σnn = ΦnnΓnn where Φnn denotes
the noise power and where Γnn is the noise coherence
matrix. With this factorization, the MVDR solution de-
volves to:

wH
sdb =

Φ−1
nnΓ−1

nnv

Φ−1
nnvHΓ−1

nnv
=

Γ−1
nnv

vHΓ−1
nnv

. (6)

Following [11], we in particular assume a spherically
isotropic noise field, i.e. a particular choice of Γnn,
which is optimal for reverberant environments [14]:

(Γnn)i,j(ω) = sinc
(
ω
‖mi −mj‖

c

)
. (7)

This results in the Superdirective Beamformer (SDB)
[11]. In the case of the speech separation scenario, we
would actually like to “listen” to one speaker while sup-
pressing the other. This can be achieved by using the
general LCMV solution [15] in order to apply a 1 in the
direction of the desired speaker and a 0 in the direction
of the interference, i.e. wHv1 = 1 and wHv2 = 0 with
v1 and v2 denoting the location of the desired and inter-
fering speaker, respectively. This leads to the following
weight vector:

wlcmv = Γ−1
nnC

(
CHΓ−1

nnC
)−1

f (8)

with C = [v1 v2], f = [1 0]T and with Γnn again
denoting the noise coherence matrix of the spherically
isotropic noise field. As a result we have a simple ex-
tension of the superdirective beamformer to the speech
separation case.

3.3. MMI Beamforming

In contrast to the above approach, which could be consid-
ered to be a bit more of a standard solution, the authors
of [6] proposed to solve the speech separation problem
by using two beamformers whose weights are jointly op-
timized to minimize the mutual information at the beam-
former outputs. In order to ensure that the distortionless
constraint is maintained, the authors used the Generalized
Sidelobe Canceler (GSC) configuration

Yi = (wq,i −Biwa,i)
H X(K) (9)

with the quiescent weight vector being chosen as wq,i =
vi for the i-th speaker. The blocking matrix Bi by def-
inition projects to the subspace, which is orthogonal to
wq,i. The active weight vectors wa,i are optimized to
individually minimize the mutual information

I(Y1, Y2) = E
{

log
p(Y1, Y2)

p(Y1)p(Y2)

}
(10)

in each frequency bin. Due to the lack of an analytical
solution, the minimization is performed in an iterative
fashion, as explained in more detail in [6]. The resulting
beamformer is referred to as Minimum Mutual Informa-
tion (MMI) beamformer.

4. Postfiltering Stage
As shown in [16], the minimum mean square error
(MMSE) solution2 to spatial filtering consists of an
MVDR beamformer plus a Wiener postfilter:

wmmse(ω) =

(
Φss(ω)

Φss(ω) + Φnn(ω)

)
︸ ︷︷ ︸

H(ω)

wmvdr(ω) (11)

The Φss(ω) and Φnn(ω) denote the speech and noise
power at the output of the array. Following Zelinski [12],
they are here estimated as follows:

Φss ≈
2

L(L− 1)
<


L−1∑
i=1

L∑
j=i+1

v∗i Φxixjvj

 (12)

Φnn ≈
1

L

L∑
i=1

Φxixi
− Φss (13)

with Φxixj and Φxixi denoting the cross and power spec-
tral densities of the sensor signals and with vi denoting
the i-th coefficient of the array manifold vector. The de-
pendency on ω has again been dropped for the sake of
readability. Equations (12) and (13) are based on the as-
sumption that the noise is incoherent. But this may ac-
tually not be the case in practice. Hence, we here use a
noise overestimation factor β in order to compensate for
possible systematic errors. This is achieved by changing
the frequency response H(ω) in (11) to:

H(ω) =
Φss(ω)

Φss(ω) + βΦnn(ω)
(14)

Early speech recognition experiments indicated that a
value β of 0.5 gives reasonable results – at least on the
MC-WSJ-AV corpus [10] which has been used in the
speech separation challenge. This value compares to a
theoretical optimum of 1/L = 0.125 for delay-and-sum
beamforming with an 8-sensor array [17] (under assump-
tion of incoherent noise).

5. Time/Frequency Masking
Although the use of postfiltering led3 to a significant re-
duction of the word error rate, it is suboptimal for speech
separation where we are mainly facing a strong direc-
tive interference (the second speaker) [5]. Hence, Ma-
ganti et al. [4] proposed to replace the postfiltering stage
by a specialized cross-talk cancellation postfilter, which
makes use of the fact that different speakers tend to excite
different frequency bands at a time. Consequently, the
authors of [4, 5] use binary masking of the beamformer

2This is also called the multi-channel Wiener filter.
3see the experimental results in Section 6



outputs Yi, i ∈ {1, 2}, in order to extract the estimated
clean speech spectra Ŝi(ω, t) at time t:

Ŝi(ω, t) = Mi(ω, t) · Yi(ω, t) (15)

where Mi(ω, t) denotes a binary mask, which would op-
timally be set to 1 if the T/F unit (ω, t) is used by that (the
i-th) speaker and which is set to 0 otherwise. This ap-
proach is justified by Rickard and Yilmaz’s approximate
W-disjoint orthogonality (WDO) of speech [13], which
states that

S1(ω, t)S2(ω, t) ≈ 0 ∀ω, t. (16)

Hence, perfect demixing via binary T/F masks is possi-
ble if the time-frequency representations of the sources
do not overlap (i.e. the WDO condition holds for all
T-F points) [18, 13]. This, however, requires the masks
Mi(ω, t) to be known. As that is not the case in practice,
Maganti et al. [4] proposed to use the following estimate:

Mi(ω, t) =

{
1, |Yi(ω, t)| ≥ |Yj(ω, t)| ∀j
0, otherwise

(17)

which is based on the assumption that the spatial filtering
stage has already suppressed the interfering speaker, such
that |Yi(ω, t)| > |Yj(ω, t)| if the i-th speaker is using the
(ω, t)-th frequency unit while the j-th speaker is not. The
same approach has been used in [7].

5.1. Log-Sigmoid Masks

Although binary masking is optimal in theory, it has cer-
tain deficiencies in practice. First of all, the mask es-
timates may be erroneous if the interfering speaker is
not sufficiently suppressed through spatial filtering. Sec-
ondly, the approach may not be optimal in reverberant
environments, such as the SSC task [10], where the spec-
tral energy is smeared in time. Hence, we here propose
the use of soft masks, which can more appropriately treat
the arising uncertainties. The use of sigmoid masks is
motivated by

1. the work of Barker et al. [8] where it has been
shown that sigmoid masks give better results in the
presence of mask uncertainties.

2. the work of Araki et al. [19] where its has been
shown (a) that soft-masks can perform better in
convolutive mixtures and (b) that a simple sigmoid
mask can perform comparably to other sophisti-
cated soft masks or even better.

In case of the speech separation scenario, we may use
sigmoid masks in order to apply a weight to each of the
sources, based on the difference of their magnitudes:

Mi(ω, t) =
1

1 + exp[−α (|Yi(ω, t)| − |Yj(ω, t)|)]
(18)

with i ∈ 1, 2, j = 3− i and with α being a scale parame-
ter, which specifies the sharpness of the mask. Instead of
directly applying this mask, we here use the fact that the
human auditory system perceives the intensity of sound in
a logarithmic scale. This can be incorporated into (18) by
replacing the magnitudes |Yi(ω, t)| by logarithmic mag-
nitudes log |Yi(ω, t)|:

M̃i,α(ω, t) =
1

1 +

(
|Yj(ω, t)|
|Yi(ω, t)|

)α (19)

where the logarithms have been pulled out of the expo-
nential function. Although the scale parameter α may
be chosen individually for each frequency bin, it is here
jointly optimized once for each utterance, as described
in Section 5.2. In the particular case where α = 2, the
log-sigmoid mask is identical to a Wiener filter

M̃i,2(ω, t) =
|Yi(ω, t)|2

|Yi(ω, t)|2 + |Yj(ω, t)|2
(20)

with |Yi(ω, t)| being the magnitude of clean speech and
with |Yj(ω, t)| being the magnitude of the noise.

5.2. Kurtosis Optimization

Motivated by Li and Lutman’s work4 we here use the
subband-kurtosis as a measure for judging the separation
quality of concurrent speech. Consequently, the quality
of a separated utterance Ŝi,α is determined as the average
kurtosis over all frequencies:

kurt
{
Ŝi,α

}
=

1

|Ω|
∑
ω∈Ω

1
T

∑T
t=1 |Ŝi,α(ω, t)|4(

1
T

∑T
t=1 |Ŝi,α(ω, t)|2

)2 (21)

where ω ∈ Ω and t ∈ {1, . . . , T} denote the angular
frequency and the discrete time index, respectively. The
Ŝi,α(ω, t) are the separated subband samples after time-
frequency masking, i.e.

Ŝi,α(ω, t) = M̃i,α(ω, t)Yi(ω, t),

with scale parameter α. Now, α may be optimized by
running a search over a range Rα of possible values and
then selecting that α for which kurt{Ŝi,α} is maximized.
To get a good coverage of different mask shapes with few
parameters to test, we use:

Rα = {exp(a/10), a = −50, . . . , 50} . (22)

This optimization is done once for each utterance and in-
dividually for each speaker. Also note that soft-masking
can easily be extended to more than 2 speakers by using
j = argmaxk 6=i |Yk(ω, t)| instead of j = 3− i in (19).

4which clearly shows that the subband kurtosis decreases with the
number of simultaneous speakers [9]



6. Experiments

The performance of the proposed system has been eval-
uated on the two speaker condition of the Multi-Channel
Wall Street Journal Audio-Visual (MC-WSJ-AV) corpus
[10]. This dataset has been used in the PASCAL Speech
Separation Challenge II [7, 5] and it consists of two con-
current speakers who are simultaneously reading sen-
tences form the Wall Street Journal. The total number of
utterances is 356 (or 178, respectively, if we consider the
fact that two sentences are read at a time [5]). The speech
recognition system used in the experiments is identical to
the one in [7], except that we use three passes only (in-
stead of four): a first, unadapted pass; a second pass with
unsupervised MLLR feature space adaptation; and a third
pass with full MLLR adaptation. The estimated speaker
positions are the ones used in [7].

6.1. Results

Table 1 shows the word error rates (WERs) we obtained
with different configurations of the speech separation sys-
tem from Figure 1. For spatial filtering, we used ei-
ther a delay-and-sum beamformer (DSB), a superdirec-
tive beamformer (SDB), the LCMV beamformer from
Section 3.2 or the minimum mutual information (MMI)
beamformer from [6, 7]. The first row of table 1 reveals
that the WER of the plain SDB is 9% lower than that
of the DSB. LCMV and MMI beamforming give a fur-
ther reduction of 10% and therewith perform comparably
(58.6% versus 57.6%). The second row of table 1 shows
the combination of spatial filtering with binary masking.
This combination gives a significant improvement over
the plain beamformers: almost 20% for the DSB, 10%
for the SDB and still 8% and 5% for the LCMV and MMI
beamformers. The use of kurtosis optimized log-sigmoid
masks (row 3) results in similar improvements, except for
the SDB where we have a further reduction of 13% com-
pared to binary masking.

Beamformer WER(%)
Mask PF DSB SDB LCMV MMI
None no 77.87 68.73 58.56 57.58

Binary no 58.89 57.20 49.97 52.15
log-sigm. no 58.65 44.63 48.56 52.39

None yes 69.07 61.65 56.77 56.98
Binary yes 51.03 45.33 51.06 49.99

log-sigm. yes 48.09 42.73 43.47 46.83
Headset 23.44

Beamformer WER(%)
Mask PF DSB SDB LCMV MMI
None no 77.87 68.73 58.56 57.58

Binary no 58.89 57.20 49.97 52.15
log-sigm. no 58.65 44.63 48.56 52.39

None yes 69.07 61.65 56.77 56.98
Binary yes 51.03 45.33 51.06 49.99

log-sigm. yes 48.09 42.73 43.47 46.83
Headset 23.44

Table 1: Word error rates for different beamformers with
and without postfiltering (PF) and time-frequeny mask-
ing. The last row gives a comparison to the headset data
which has been recorded in parallel to the array [10].

These results changed dramatically when a postfilter5

was applied between spatial filtering and masking. In
this case, the combination with log-sigmoid masks gave
the best speech recognition results obtained in this paper,
with a word error rate of approximately 43% for the SDB
and LCMV beamformers. The MMI and DSB beam-
former were only slightly inferior, with a performance of
47% and 48%. Binary masking was between 3% and 6%
worse. These results demonstrate that the right choice of
post-processing can have a tremendous effect. The best
WER is not necessarily achieved with the most sophisti-
cated beamformer.

6.2. Some Analysis

Due to the large improvements obtained with log-sigmoid
masks, we considered it worth investigating how the kur-
tosis optimization affects the mask shape. For this pur-
pose, we first selected some utterances which seemed to
be well separated (after processing with the SDB) and
then plotted their kurtosis (after T/F-masking) in depen-
dency of the scale parameter. An example of such a plot
is shown in Figure 2, along with a plot for an utterance
where the separation was poor.
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Figure 2: Kurtosis for well (upper plot) and poorly (lower
plot) separated speech, in dependence of α.

Motivated by the strong differences in these plots, we di-
vided the corpus into a set of utterances for which the
speech seemed to be well-separated and a set of utter-
ances for which the separation seemed to be poor. Sub-
sequently, we plotted the average mask shape for each of
the sets, as shown in Figure 3. This reveals that the kurto-
sis maximization selects harder (closer to binary) masks
when the separation through spatial filtering is poor. It
selects softer (i.e. less strongly reacting) masks when the
separation quality is good.

5the one from Section 4
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7. Conclusions
We have investigated the use of a speech separation sys-
tem which consists of a spatial filtering stage, a postfil-
tering stage and a subsequent T/F-masking stage. We
have shown in particular (1) that log-sigmoid masks can
significantly outperform binary masks and (2) that kurto-
sis optimization chooses the mask shape in dependence
of the separation quality after spatial filtering. In total,
the proposed approach gave a reduction of over 25% in
WER over a plain SDB (in combination with postfilter-
ing). Apart from the above, we have shown that an inter-
ference canceling LCMV with a diffuse noise field design
gives almost the same performance as a minimum mutual
information beamformer.
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